Organism : Bacillus subtilis | Module List :
BSU05240 ydeL

putative PLP-dependent transcriptional regulator (RefSeq)

CircVis
Functional Annotations (6)
Function System
Transcriptional regulators containing a DNA-binding HTH domain and an aminotransferase domain (MocR family) and their eukaryotic orthologs cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
catalytic activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
pyridoxal phosphate binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU05240
(Mouseover regulator name to see its description)

BSU05240 is regulated by 14 influences and regulates 3 modules.
Regulators for BSU05240 ydeL (14)
Regulator Module Operator
BSU00560 115 tf
BSU03880 115 tf
BSU05060 115 tf
BSU05150 115 tf
BSU05180 115 tf
BSU05240 115 tf
BSU05460 115 tf
BSU05850 115 tf
BSU09430 115 tf
BSU11930 115 tf
BSU05060 291 tf
BSU25100 291 tf
BSU33740 291 tf
BSU38310 291 tf

Warning: BSU05240 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5184 1.50e+00 TtATGaaCAGCa.GcTTcaaTAAA
Loader icon
5185 5.90e-02 ctaTttaa.AtaAaGtgAatg
Loader icon
5520 3.20e-10 gaAAAaa.AGAttatgAAcAaGA
Loader icon
5521 1.40e-04 ATGggCctCCTTTTTtaTgAggTA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU05240

BSU05240 is enriched for 6 functions in 3 categories.
Module neighborhood information for BSU05240

BSU05240 has total of 59 gene neighbors in modules 115, 291
Gene neighbors (59)
Gene Common Name Description Module membership
BSU00440 veg hypothetical protein (RefSeq) 94, 115
BSU01800 alkA DNA-3-methyladenine glycosylase (RefSeq) 115, 157
BSU02030 ybdM putative protein kinase (RefSeq) 222, 291
BSU03090 ycgF putative aminoacid export permease (RefSeq) 291, 402
BSU03100 ycgG hypothetical protein (RefSeq) 216, 291
BSU03140 tmrB ATP-binding tunicamycin resistance protein (RefSeq) 94, 115
BSU03150 aroK shikimate kinase (RefSeq) 94, 115
BSU03360 yciC putative metallochaperone with NTPase activity (RefSeq) 163, 291
BSU03540 ycxB hypothetical protein (RefSeq) 49, 115
BSU03880 yczG putative transcriptional regulator (ArsR family) (RefSeq) 94, 115
BSU04610 ydcA hypothetical protein (RefSeq) 115, 123
BSU05060 lrpB transcriptional regulator (Lrp/AsnC family) (RefSeq) 115, 157
BSU05090 yddS putative permease (RefSeq) 38, 115
BSU05110 ydeA putative enzyme (RefSeq) 49, 115
BSU05170 ydeE putative transcriptional regulator (AraC/XylS family) (RefSeq) 115, 157
BSU05180 ydeF putative PLP-dependent transcriptional regulator (RefSeq) 115, 216
BSU05200 ydeH putative integral inner membrane protein (RefSeq) 115, 159
BSU05210 ydeI hypothetical protein (RefSeq) 115, 157
BSU05240 ydeL putative PLP-dependent transcriptional regulator (RefSeq) 115, 291
BSU05460 ydfL putative transcriptional regulator of efflux transporter (RefSeq) 115, 157
BSU08360 yfiQ putative membrane component involved in biofilm formation (RefSeq) 115, 285
BSU09600 crcBA camphor resistance protein CrcB (RefSeq) 64, 115
BSU09760 yheE hypothetical protein (RefSeq) 115, 171
BSU11510 yjbE putative transporter component (RefSeq) 64, 115
BSU12070 yjdJ hypothetical protein (RefSeq) 166, 291
BSU12200 yjiA hypothetical protein (RefSeq) 115, 157
BSU12890 ykcC putative glycosyltransferase (RefSeq) 130, 291
BSU13370 ykoQ putative metallophosphoesterase (RefSeq) 115, 226
BSU13790 ykvQ putative sporulation-specific glycosylase (RefSeq) 44, 291
BSU17060 ymzD putative integral inner membrane protein (RefSeq) 115, 159
BSU18790 yoaZ putative factor of the oxidative stress response (RefSeq) 115, 226
BSU18920 phrK secreted regulator of the activity of phosphatase RapK (RefSeq) 239, 291
BSU19120 czrA transcriptional regulator (multiple metal-sensing ArsR-SmtB transcriptional repressors family) (RefSeq) 78, 291
BSU23740 yqjU hypothetical protein (RefSeq) 36, 291
BSU23940 yqjB hypothetical protein (RefSeq) 291, 406
BSU25710 cwlH N-acetylmuramoyl-L-alanine amidase (RefSeq) 291, 406
BSU25720 yqeD hypothetical protein (RefSeq) 40, 291
BSU26160 yqbC conserved hypothetical protein; skin element (RefSeq) 145, 291
BSU26580 bltR transcriptional regulator (RefSeq) 115, 409
BSU26590 blt efflux transporter (RefSeq) 115, 409
BSU26600 bltD spermine/spermidine acetyltransferase (RefSeq) 115, 129
BSU30350 yttB putative efflux transporter (RefSeq) 51, 291
BSU30680 ytjA hypothetical protein (RefSeq) 64, 115
BSU32020 yuiH putative sulfite oxidase (RefSeq) 96, 291
BSU32030 bioYB putative biotin transporter (RefSeq) 177, 291
BSU32070 yuiC hypothetical protein (RefSeq) 291, 307
BSU32190 yuzB hypothetical protein (RefSeq) 96, 115
BSU33130 liaI permease (RefSeq) 19, 115
BSU36340 ywpE putative sortase (RefSeq) 291, 318
BSU36790 ywmA hypothetical protein (RefSeq) 51, 291
BSU37540 ywhB 4-oxalocrotonate tautomerase (RefSeq) 111, 115
BSU38310 ywbI putative transcriptional regulator (LysR family) (RefSeq) 291, 409
BSU38330 lrgB anti-holin factor controlling activity of murein hydrolases (RefSeq) 291, 409
BSU38410 sacX negative regulator of SacY (RefSeq) 98, 291
BSU39830 yxcA hypothetical protein (RefSeq) 263, 291
BSU39850 yxbF putative transcriptional regulator (RefSeq) 213, 291
BSU40140 yydJ putative permease for export of a regulatory peptide (RefSeq) 36, 115
BSU40150 yydI ABC transporter (ATP-binding protein) (RefSeq) 32, 115
BSU40980 yyaB putative integral inner membrane protein (RefSeq) 115, 291
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU05240
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend