Organism : Clostridium acetobutylicum | Module List :
CAC1493

Zn-finger DNA-binding domain (NCBI ptt file)

CircVis
Functional Annotations (2)
Function System
Transposase and inactivated derivatives cog/ cog
transposition, DNA-mediated go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC1493
(Mouseover regulator name to see its description)

CAC1493 is regulated by 24 influences and regulates 0 modules.
Regulators for CAC1493 (24)
Regulator Module Operator
CAC0113 71 tf
CAC0382 71 tf
CAC0465 71 tf
CAC0723 71 tf
CAC0745 71 tf
CAC0856 71 tf
CAC1404 71 tf
CAC2568 71 tf
CAC2851 71 tf
CAC3142 71 tf
CAC3611 71 tf
CAC3651 71 tf
CAC3729 71 tf
CAC0174 74 tf
CAC0457 74 tf
CAC0549 74 tf
CAC0723 74 tf
CAC1578 74 tf
CAC2605 74 tf
CAC3406 74 tf
CAC3413 74 tf
CAC3512 74 tf
CAC3606 74 tf
CAC3651 74 tf

Warning: CAC1493 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
6796 1.10e-04 AGGaGag
Loader icon
6797 8.60e+03 GGcaAGTTTGCTC
Loader icon
6802 8.40e+02 g.cCTgCg
Loader icon
6803 4.50e+03 GTTtAtGAGgtaG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC1493

CAC1493 is enriched for 2 functions in 3 categories.
Enrichment Table (2)
Function System
Transposase and inactivated derivatives cog/ cog
transposition, DNA-mediated go/ biological_process
Module neighborhood information for CAC1493

CAC1493 has total of 47 gene neighbors in modules 71, 74
Gene neighbors (47)
Gene Common Name Description Module membership
CAC0055 CAC0055 Uncharacterized predicted metal-binding protein, ortholog of Streptomyces (2808777) (NCBI ptt file) 71, 185
CAC0371 CAC0371 Response regulator (CheY-like domain and HTH domain) (NCBI ptt file) 71, 287
CAC0381 CAC0381 Methyl-accepting chemotaxis protein (NCBI ptt file) 74, 344
CAC0417 CAC0417 Similar to arsenate reductase (NCBI ptt file) 71, 185
CAC0457 CAC0457 Transcriptional regulator, AcrR family (NCBI ptt file) 74, 344
CAC0536 dltE Short-chain dehydrodenase (gene dltE) (NCBI ptt file) 71, 108
CAC0549 CAC0549 Predicted transcriptional regulator (NCBI ptt file) 74, 261
CAC0600 CAC0600 Predicted membrane protein (NCBI ptt file) 10, 71
CAC0745 CAC0745 Transcriptional regulator, LysR family (NCBI ptt file) 71, 83
CAC0858 CAC0858 Phosphinothricin acetyltransferase (NCBI ptt file) 71, 216
CAC1005 CAC1005 Uncharacterized protein similar to Cylindrotheca fusiformis plasmid hypothetical protein (GI:99319) (NCBI ptt file) 74, 140
CAC1046 CAC1046 Transcriptional regulator, LysR family (NCBI ptt file) 71, 287
CAC1493 CAC1493 Zn-finger DNA-binding domain (NCBI ptt file) 71, 74
CAC1496 CAC1496 Uncharacterized protein, homolog of YCGL B.subtilis (NCBI ptt file) 71, 137
CAC1502 CAC1502 Hypothetical protein (NCBI ptt file) 71, 346
CAC1540 CAC1540 Uncharacterized ATP-grasp enzyme (NCBI ptt file) 71, 91
CAC1577 CAC1577 Ncharacterized conserved protein (NCBI ptt file) 71, 239
CAC1578 CAC1578 Predicted transcriptional regulator (NCBI ptt file) 74, 89
CAC1597 CAC1597 Zn-finger DNA-binding domain (NCBI ptt file) 74, 89
CAC1598 CAC1598 Hypothetical protein, CF-32 family (NCBI ptt file) 74, 89
CAC1618 CAC1618 Hypothetical protein (NCBI ptt file) 71, 132
CAC1619 CAC1619 Hypothetical protein (NCBI ptt file) 71, 259
CAC1621 CAC1621 Predicted Fe-S oxidoreductase (NCBI ptt file) 71, 261
CAC1827 CAC1827 TldD-like protein fragment (NCBI ptt file) 74, 309
CAC1962 CAC1962 Predicted esterase of alpha/beta hydrolase superfamily, YBBA B.subtilis ortholog (NCBI ptt file) 71, 72
CAC2520 CAC2520 Multimeric flavodoxin (WrbA) domain containing protein (NCBI ptt file) 49, 71
CAC2568 CAC2568 Predicted transcriptional regulator (NCBI ptt file) 71, 223
CAC2605 CAC2605 Transcriptional regulator (TetR/AcrR family) (NCBI ptt file) 74, 89
CAC2705 CAC2705 Uncharacterized membrane protein, homolog of Aquifex (GI:2984271) (NCBI ptt file) 74, 344
CAC2730 CAC2730 Signal transduction histidine kinase (NCBI ptt file) 74, 157
CAC2733 CAC2733 Uncharacterized conserved membrane protein (NCBI ptt file) 69, 74
CAC2734 CAC2734 ABC-type multidrug transport system, ATPase component (NCBI ptt file) 71, 98
CAC2735 CAC2735 Response regulator (CheY-like receiver domain and HTH-type DNA-binding) (NCBI ptt file) 74, 287
CAC2759 CAC2759 Response regulator (CheY receiver domain and HTH-type DNA-binding domain) (NCBI ptt file) 71, 185
CAC2817 CAC2817 Predicted membrane protein (NCBI ptt file) 74, 89
CAC2930 CAC2930 Uncharacterized conserved membrane protein (NCBI ptt file) 71, 223
CAC2931 CAC2931 Uncharacterized conserved membrane protein (NCBI ptt file) 71, 223
CAC3293 CAC3293 Uncharacterized conserved membrane protein (NCBI ptt file) 74, 132
CAC3303 CAC3303 Superfamily II DNA/RNA helicases, SNF2 family (NCBI ptt file) 71, 294
CAC3345 CAC3345 Transcriptional regulator, AcrR family (NCBI ptt file) 74, 89
CAC3489 CAC3489 Hypothetical protein (NCBI ptt file) 69, 74
CAC3512 CAC3512 AraC-type DNA-binding domain-containing protein (NCBI ptt file) 74, 140
CAC3529 CAC3529 Hypothetical protein (NCBI ptt file) 71, 259
CAC3530 CAC3530 Hypothetical protein (NCBI ptt file) 71, 259
CAC3588 CAC3588 DNA replication protein DnaC (NCBI ptt file) 74, 157
CAC3606 CAC3606 Transcriptional regulator, AcrR family (NCBI ptt file) 74, 216
CAC3651 CAC3651 Transcriptional regulator containing a DNA-binding HTH domain and an aminotransferase domain (MocR family) (NCBI ptt file) 74, 89
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC1493
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend