Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network.

Publication Type:

Journal Article

Source:

Genome Biol, Volume 15, Issue 11, p.502 (2014)

Keywords:

Cloning, Molecular, Gene Expression Regulation, Bacterial, Gene Regulatory Networks, Humans, Isoniazid, Mycobacterium tuberculosis, Promoter Regions, Genetic, Regulon, Transcription Factors, Transcription, Genetic, Transcriptome, Tuberculosis

Abstract:

<p><b>BACKGROUND: </b>Mycobacterium tuberculosis senses and responds to the shifting and hostile landscape of the host. To characterize the underlying intertwined gene regulatory network governed by approximately 200 transcription factors of M. tuberculosis, we have assayed the global transcriptional consequences of overexpressing each transcription factor from an inducible promoter.</p><p><b>RESULTS: </b>We cloned and overexpressed 206 transcription factors in M. tuberculosis to identify the regulatory signature of each. We identified 9,335 regulatory consequences of overexpressing each of 183 transcription factors, providing evidence of regulation for 70% of the M. tuberculosis genome. These transcriptional signatures agree well with previously described M. tuberculosis regulons. The number of genes differentially regulated by transcription factor overexpression varied from hundreds of genes to none, with the majority of expression changes repressing basal transcription. Exploring the global transcriptional maps of transcription factor overexpressing (TFOE) strains, we predicted and validated the phenotype of a regulator that reduces susceptibility to a first line anti-tubercular drug, isoniazid. We also combined the TFOE data with an existing model of M. tuberculosis metabolism to predict the growth rates of individual TFOE strains with high fidelity.</p><p><b>CONCLUSION: </b>This work has led to a systems-level framework describing the transcriptome of a devastating bacterial pathogen, characterized the transcriptional influence of nearly all individual transcription factors in M. tuberculosis, and demonstrated the utility of this resource. These results will stimulate additional systems-level and hypothesis-driven efforts to understand M. tuberculosis adaptations that promote disease.</p>

Supplementary Files: 

TFOE Expression Data Records

Title Gene BioProject GEO Series Platform Accession Sample Method Sample Type References Release Date Repository
TFOE_9029_0232_B
Transcriptional regulator, TetR family
PRJNA254351 GSE59086 GPL14824 GSM1426436 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_1399_0238
Transcriptional regulator, TetR family
PRJNA254351 GSE59086 GPL14824 GSM1426437 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_1878_0238
Transcriptional regulator, TetR family
PRJNA254351 GSE59086 GPL14824 GSM1426438 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_5687_0195
Transcriptional regulator, LuxR family
PRJNA254351 GSE59086 GPL14824 GSM1426427 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_5169_0195
Transcriptional regulator, LuxR family
PRJNA254351 GSE59086 GPL14824 GSM1426426 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_8843_0144
Transcriptional regulator, TetR family
PRJNA254351 GSE59086 GPL14824 GSM1426415 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_9147_0144
Transcriptional regulator, TetR family
PRJNA254351 GSE59086 GPL14824 GSM1426416 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_2329_0158
Transcriptional regulator, TetR family
PRJNA254351 GSE59086 GPL14824 GSM1426417 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_4328_0158_C
Transcriptional regulator, TetR family
PRJNA254351 GSE59086 GPL14824 GSM1426418 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_9582_0158
Transcriptional regulator, TetR family
PRJNA254351 GSE59086 GPL14824 GSM1426419 Tiling Array RNA 25232098 4-Jul-14 GEO