Organism : Pseudomonas aeruginosa | Module List :
PA4120

probable transcriptional regulator (NCBI)

CircVis
Functional Annotations (7)
Function System
AraC-type DNA-binding domain-containing proteins cog/ cog
DNA binding go/ molecular_function
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
sequence-specific DNA binding go/ molecular_function
HpaA tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA4120
(Mouseover regulator name to see its description)

PA4120 is regulated by 21 influences and regulates 5 modules.
Regulators for PA4120 (21)
Regulator Module Operator
PA0491 317 tf
PA0512 317 tf
PA0514 317 tf
PA0515 317 tf
PA0828 317 tf
PA2586 317 tf
PA2665 317 tf
PA2838 317 tf
PA3594 317 tf
PA4120 317 tf
PA4196 317 tf
PA4341 317 tf
PA5293 317 tf
PA0179 157 tf
PA0248 157 tf
PA1570 157 tf
PA2586 157 tf
PA3133 157 tf
PA3921 157 tf
PA4120 157 tf
PA4238 157 tf

Warning: PA4120 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3142 3.70e-16 CGATcaaTaaCatGttAtaTAtaA
Loader icon
3143 1.90e-02 gAcgaaaggggcaGCcACagG
Loader icon
3460 3.20e-02 atTaacatgtTaaaTATaaaaTta
Loader icon
3461 2.00e+02 AccCcgGTTGcTGCGCcatTcGT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA4120

PA4120 is enriched for 7 functions in 3 categories.
Enrichment Table (7)
Function System
AraC-type DNA-binding domain-containing proteins cog/ cog
DNA binding go/ molecular_function
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
sequence-specific DNA binding go/ molecular_function
HpaA tigr/ tigrfam
Module neighborhood information for PA4120

PA4120 has total of 41 gene neighbors in modules 157, 317
Gene neighbors (41)
Gene Common Name Description Module membership
PA0248 PA0248 probable transcriptional regulator (NCBI) 138, 157
PA0445 PA0445 probable transposase (NCBI) 157, 324
PA0561 PA0561 hypothetical protein (NCBI) 157, 445
PA0777 PA0777 hypothetical protein (NCBI) 157, 550
PA0821 PA0821 hypothetical protein (NCBI) 157, 231
PA0822 PA0822 hypothetical protein (NCBI) 157, 231
PA1378 PA1378 hypothetical protein (NCBI) 70, 157
PA1535 PA1535 probable acyl-CoA dehydrogenase (NCBI) 157, 330
PA1570 PA1570 probable transcriptional regulator (NCBI) 101, 157
PA2542 PA2542 hypothetical protein (NCBI) 157, 313
PA2543 PA2543 hypothetical protein (NCBI) 157, 313
PA3092 fadH1 2,4-dienoyl-CoA reductase FadH1 (NCBI) 157, 313
PA3093 PA3093 hypothetical protein (NCBI) 157, 320
PA3094 PA3094 probable transcriptional regulator (NCBI) 157, 537
PA3209 PA3209 hypothetical protein (NCBI) 157, 372
PA3367 PA3367 hypothetical protein (NCBI) 157, 372
PA3765 PA3765 hypothetical protein (NCBI) 157, 542
PA3870 moaA1 molybdopterin biosynthetic protein A1 (NCBI) 317, 343
PA3871 PA3871 probable peptidyl-prolyl cis-trans isomerase, PpiC-type (NCBI) 317, 343
PA3872 narI respiratory nitrate reductase gamma chain (NCBI) 317, 343
PA3873 narJ respiratory nitrate reductase delta chain (NCBI) 317, 343
PA3874 narH respiratory nitrate reductase beta chain (NCBI) 317, 343
PA3875 narG respiratory nitrate reductase alpha chain (NCBI) 317, 343
PA3876 narK2 nitrite extrusion protein 2 (NCBI) 317, 343
PA3877 narK1 nitrite extrusion protein 1 (NCBI) 317, 343
PA3914 moeA1 molybdenum cofactor biosynthetic protein A1 (NCBI) 317, 343
PA3915 moaB1 molybdopterin biosynthetic protein B1 (NCBI) 317, 343
PA4120 PA4120 probable transcriptional regulator (NCBI) 157, 317
PA4121 PA4121 hypothetical protein (NCBI) 138, 317
PA4122 PA4122 hypothetical protein (NCBI) 157, 317
PA4123 hpcC 5-carboxy-2-hydroxymuconate semialdehyde dehydrogenase (NCBI) 157, 317
PA4124 hpcB homoprotocatechuate 2,3-dioxygenase (NCBI) 157, 317
PA4125 hpcD 5-carboxymethyl-2-hydroxymuconate isomerase (NCBI) 157, 317
PA4126 PA4126 probable major facilitator superfamily (MFS) transporter (NCBI) 157, 317
PA4127 hpcG 2-oxo-hept-3-ene-1,7-dioate hydratase (NCBI) 157, 317
PA4128 PA4128 hypothetical protein (NCBI) 157, 317
PA4582 PA4582 hypothetical protein (NCBI) 61, 157
PA4584 PA4584 hypothetical protein (NCBI) 39, 157
PA4691 PA4691 hypothetical protein (NCBI) 157, 521
PA4692 PA4692 hypothetical protein (NCBI) 157, 236
PA4799 PA4799 hypothetical protein (NCBI) 61, 157
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA4120
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend