Organism : Rhodobacter sphaeroides 2.4.1 | Module List :
RSP_3042 dorX

DMSO reductase regulatory protein DorX (NCBI)

CircVis
Functional Annotations (5)
Function System
DNA-binding HTH domain-containing proteins cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
sequence-specific DNA binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for RSP_3042
(Mouseover regulator name to see its description)

RSP_3042 is regulated by 22 influences and regulates 7 modules.
Regulators for RSP_3042 dorX (22)
Regulator Module Operator
RSP_0768 106 tf
RSP_0927 106 tf
RSP_1077 106 tf
RSP_1790 106 tf
RSP_2130 106 tf
RSP_3042 106 tf
RSP_3694 106 tf
RSP_0032 57 tf
RSP_0601 57 tf
RSP_0768 57 tf
RSP_0927 57 tf
RSP_1669 57 tf
RSP_1866 57 tf
RSP_1952 57 tf
RSP_2130 57 tf
RSP_2171 57 tf
RSP_2591 57 tf
RSP_2681 57 tf
RSP_2730 57 tf
RSP_2939 57 tf
RSP_3324 57 tf
RSP_3620 57 tf
Regulated by RSP_3042 (7)
Module Residual Genes
86 0.48 21
106 0.49 9
248 0.61 23
285 0.61 35
332 0.50 21
335 0.55 9
380 0.52 23
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7834 6.30e-08 aaaAAAtCgG
Loader icon
7835 5.90e+00 ATCTATGCCCTTTGTGATATATA
Loader icon
7932 1.20e-01 AAAAaCGgCcAaAgGCTGtaTaT
Loader icon
7933 8.60e+00 TATTGCATGTATCTGGGTAAA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for RSP_3042

RSP_3042 is enriched for 5 functions in 3 categories.
Enrichment Table (5)
Function System
DNA-binding HTH domain-containing proteins cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
sequence-specific DNA binding go/ molecular_function
Module neighborhood information for RSP_3042

RSP_3042 has total of 30 gene neighbors in modules 57, 106
Gene neighbors (30)
Gene Common Name Description Module membership
RSP_0341 RSP_0341 Cytosine deaminase (NCBI) 57, 114
RSP_0342 RSP_0342 putative ABC sugar transporter, inner membrane subunit (NCBI) 57, 114
RSP_0343 RSP_0343 putative ABC sugar transporter, inner membrane subunit (NCBI) 57, 204
RSP_0344 RSP_0344 putative ABC sugar transporter, fused ATPase subunits (NCBI) 57, 204
RSP_0347 RSP_0347 ABC transporter, inner membrane subunit (NCBI) 57, 204
RSP_0348 RSP_0348 ABC transporter, inner membrane subunit (NCBI) 57, 204
RSP_0802 RSP_0802 Dipeptidase (NCBI) 106, 357
RSP_0805 DppC ABC dipeptide transporter, inner membrane subunit DppC (NCBI) 57, 67
RSP_0889 glnK Nitrogen regulatory protein P-II (NCBI) 57, 358
RSP_1442 RSP_1442 ABC sugar transporter, periplasmic sugar-binding protein (NCBI) 89, 106
RSP_1845 xseA Exonuclease VII, large subunit (NCBI) 106, 256
RSP_1919 RSP_1919 hypothetical protein (NCBI) 94, 106
RSP_2090 pycA Pyruvate carboxylase (NCBI) 16, 57
RSP_2158 RSP_2158 ABC transporter, periplasmic solute-binding protein (NCBI) 57, 59
RSP_3037 RSP_3037 Putative short-chain dehydrogenase/reductase (NCBI) 57, 168
RSP_3038 RSP_3038 ABC permidine/putrescine transporter, inner membrane subunit (NCBI) 57, 106
RSP_3039 RSP_3039 ABC permidine/putrescine transporter, inner membrane subunit (NCBI) 57, 106
RSP_3040 RSP_3040 ABC permidine/putrescine transporter, periplasmic substrate-binding protein (NCBI) 57, 106
RSP_3041 RSP_3041 ABC permidine/putrescine transporter, ATPase subunit (NCBI) 57, 106
RSP_3042 dorX DMSO reductase regulatory protein DorX (NCBI) 57, 106
RSP_3248 RSP_3248 ABC peptide transporter, periplasmic binding protein (NCBI) 57, 114
RSP_3381 RSP_3381 NAD(P)H -dependent quinone oxidoreductase (NCBI) 57, 175
RSP_3382 RSP_3382 hypothetical protein (NCBI) 57, 102
RSP_3383 RSP_3383 hypothetical protein (NCBI) 57, 102
RSP_3513 RSP_3513 GAF sensor diguanylate cyclase (NCBI) 57, 293
RSP_3687 RSP_3687 ABC sugar transporter, periplasmic binding protein (NCBI) 57, 171
RSP_3688 RSP_3688 ABC sugar transporter, ATPase subunit (NCBI) 57, 171
RSP_3689 yphD ABC sugar transporter, inner membrane subunit (NCBI) 57, 88
RSP_3691 RSP_3691 putative cytoplasmic protein (NCBI) 31, 57
RSP_3758 RSP_3758 Cytosine-specific DNA methylase (NCBI) 57, 130
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for RSP_3042
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend