Organism : Bacillus cereus ATCC14579 | Module List :
BC0370

hypothetical protein (NCBI ptt file)

CircVis
Functional Annotations (2)
Function System
N-acetyltransferase activity go/ molecular_function
metabolic process go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC0370
(Mouseover regulator name to see its description)

BC0370 is regulated by 31 influences and regulates 0 modules.
Regulators for BC0370 (31)
Regulator Module Operator
BC0213 363 tf
BC0607 363 tf
BC0648 363 tf
BC0742 363 tf
BC1335 363 tf
BC1710 363 tf
BC2903 363 tf
BC3332 363 tf
BC3983 363 tf
BC4029 363 tf
BC5074 363 tf
BC0499 230 tf
BC0518 230 tf
BC0961 230 tf
BC1680 230 tf
BC1703 230 tf
BC1732 230 tf
BC1850 230 tf
BC2108 230 tf
BC2410 230 tf
BC2988 230 tf
BC3062 230 tf
BC3069 230 tf
BC3127 230 tf
BC3207 230 tf
BC4076 230 tf
BC4256 230 tf
BC4425 230 tf
BC4703 230 tf
BC5000 230 tf
BC5256 230 tf

Warning: BC0370 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4376 1.20e-03 CcctTCCtcTA
Loader icon
4377 2.50e+03 AgagagAAATgATatGaaag
Loader icon
4636 1.60e+00 aAgGaGgg
Loader icon
4637 1.10e+04 ccGGACGG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC0370

BC0370 is enriched for 2 functions in 2 categories.
Enrichment Table (2)
Function System
N-acetyltransferase activity go/ molecular_function
metabolic process go/ biological_process
Module neighborhood information for BC0370

BC0370 has total of 42 gene neighbors in modules 230, 363
Gene neighbors (42)
Gene Common Name Description Module membership
BC0036 BC0036 Thymidylate kinase (NCBI ptt file) 230, 329
BC0200 BC0200 hypothetical protein (NCBI ptt file) 363, 498
BC0204 BC0204 Bicyclomycin resistance protein (NCBI ptt file) 86, 230
BC0213 BC0213 Transcriptional regulator, AraC family (NCBI ptt file) 363, 498
BC0370 BC0370 hypothetical protein (NCBI ptt file) 230, 363
BC0371 BC0371 Mandelate racemase/muconate lactonizing enzyme family protein (NCBI ptt file) 230, 363
BC0428 BC0428 ABC transporter ATP-binding protein uup (NCBI ptt file) 98, 230
BC1118 BC1118 Two-component sensor kinase yvrG (NCBI ptt file) 230, 460
BC1119 BC1119 Two-component response regulator yvrH (NCBI ptt file) 55, 230
BC1360 BC1360 Bacitracin transport permease protein BCRB (NCBI ptt file) 363, 498
BC1361 BC1361 CAAX amino terminal protease family (NCBI ptt file) 123, 363
BC1433 BC1433 hypothetical protein (NCBI ptt file) 363, 498
BC1446 BC1446 Membrane metalloprotease (NCBI ptt file) 19, 363
BC1703 BC1703 Transcriptional regulator, GntR family (NCBI ptt file) 230, 246
BC1704 BC1704 Transporter, Drug/Metabolite Exporter family (NCBI ptt file) 230, 256
BC1728 BC1728 hypothetical Membrane Spanning Protein (NCBI ptt file) 19, 363
BC1732 BC1732 Two-component response regulator (NCBI ptt file) 230, 308
BC1733 BC1733 Sensory Transduction Protein Kinase (NCBI ptt file) 230, 308
BC1846 BC1846 Glutamyl-tRNA(Gln) amidotransferase subunit A (NCBI ptt file) 19, 363
BC1984 BC1984 Small acid-soluble spore protein (NCBI ptt file) 230, 254
BC2000 BC2000 None 108, 230
BC2001 BC2001 Integral membrane protein (NCBI ptt file) 75, 230
BC2034 BC2034 Export protein for polysaccharides and teichoic acids (NCBI ptt file) 230, 506
BC2706 BC2706 Acetyltransferase (NCBI ptt file) 230, 395
BC2812 BC2812 None 19, 230
BC3055 BC3055 hypothetical protein (NCBI ptt file) 363, 517
BC3193 BC3193 hypothetical protein (NCBI ptt file) 363, 498
BC3301 BC3301 hypothetical Cytosolic Protein (NCBI ptt file) 9, 230
BC3302 BC3302 pentapeptide repeat containing protein (NCBI ptt file) 230, 254
BC3303 BC3303 hypothetical protein (NCBI ptt file) 230, 254
BC3328 BC3328 ABC transporter permease protein (NCBI ptt file) 363, 454
BC3329 BC3329 ABC transporter ATP-binding protein (NCBI ptt file) 248, 363
BC3470 BC3470 hypothetical protein (NCBI ptt file) 248, 363
BC3760 BC3760 6-phospho-beta-glucosidase (NCBI ptt file) 363, 498
BC3913 BC3913 Phospho-N-acetylmuramoyl-pentapeptide-transferase (NCBI ptt file) 230, 425
BC4100 BC4100 5'-nucleotidase (NCBI ptt file) 363, 498
BC4787 BC4787 hypothetical protein (NCBI ptt file) 363, 498
BC4948 BC4948 Internalin G (NCBI ptt file) 230, 460
BC4949 BC4949 hypothetical protein (NCBI ptt file) 230, 460
BC5074 BC5074 Transcriptional regulator, MerR family (NCBI ptt file) 19, 363
BC5161 BC5161 CAPG protein (NCBI ptt file) 130, 230
BC5162 BC5162 Phosphoglycolate phosphatase (NCBI ptt file) 230, 482
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC0370
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend