Organism : Bacillus cereus ATCC14579 | Module List :
BC0544

iron-sulfur cluster-binding protein (NCBI ptt file)

CircVis
Functional Annotations (6)
Function System
Uncharacterized Fe-S protein cog/ cog
electron transport go/ biological_process
electron carrier activity go/ molecular_function
oxidoreductase activity go/ molecular_function
iron-sulfur cluster binding go/ molecular_function
TIGR00276 tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC0544
(Mouseover regulator name to see its description)

BC0544 is regulated by 33 influences and regulates 0 modules.
Regulators for BC0544 (33)
Regulator Module Operator
BC0047 476 tf
BC0059 476 tf
BC0848 476 tf
BC0882 476 tf
BC1732 476 tf
BC2217 476 tf
BC3062 476 tf
BC3426 476 tf
BC3653 476 tf
BC3813 476 tf
BC3814 476 tf
BC3826 476 tf
BC3844 476 tf
BC3922 476 tf
BC4181 476 tf
BC4661 476 tf
BC5265 476 tf
BC5282 476 tf
BC0057 394 tf
BC1113 394 tf
BC1614 394 tf
BC1698 394 tf
BC1719 394 tf
BC2178 394 tf
BC2401 394 tf
BC3332 394 tf
BC3588 394 tf
BC3814 394 tf
BC3982 394 tf
BC4001 394 tf
BC4029 394 tf
BC4356 394 tf
BC5373 394 tf

Warning: BC0544 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4698 3.40e+01 aGGAGG
Loader icon
4699 5.50e+03 CGgcAaaAacg.GgcgtTtc
Loader icon
4862 1.10e-01 Tgaaa.GagggGgcg
Loader icon
4863 2.30e+01 cggaAactCcC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC0544

BC0544 is enriched for 6 functions in 3 categories.
Enrichment Table (6)
Function System
Uncharacterized Fe-S protein cog/ cog
electron transport go/ biological_process
electron carrier activity go/ molecular_function
oxidoreductase activity go/ molecular_function
iron-sulfur cluster binding go/ molecular_function
TIGR00276 tigr/ tigrfam
Module neighborhood information for BC0544

BC0544 has total of 36 gene neighbors in modules 394, 476
Gene neighbors (36)
Gene Common Name Description Module membership
BC0046 BC0046 Dimethyladenosine transferase (NCBI ptt file) 285, 394
BC0057 BC0057 hypothetical protein (NCBI ptt file) 243, 394
BC0107 BC0107 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (NCBI ptt file) 285, 394
BC0188 BC0188 Phosphoglucosamine mutase (NCBI ptt file) 394, 455
BC0289 BC0289 O-sialoglycoprotein endopeptidase (RefSeq) 22, 394
BC0453 BC0453 Zinc uptake P-type ATPase (NCBI ptt file) 118, 394
BC0509 BC0509 Multidrug resistance ABC transporter ATP-binding and permease protein (NCBI ptt file) 394, 414
BC0544 BC0544 iron-sulfur cluster-binding protein (NCBI ptt file) 394, 476
BC0545 BC0545 hypothetical Cytosolic Protein (NCBI ptt file) 285, 476
BC1341 BC1341 Aluminum resistance protein (NCBI ptt file) 192, 476
BC1342 BC1342 6-pyruvoyl tetrahydrobiopterin synthase (NCBI ptt file) 192, 476
BC1343 BC1343 Organic radical activating enzyme (NCBI ptt file) 192, 476
BC3378 BC3378 Luciferase-like monooxygenase (NCBI ptt file) 306, 394
BC3410 BC3410 D-threo-aldose 1-dehydrogenase (NCBI ptt file) 228, 394
BC3499 BC3499 hypothetical Cytosolic Protein (NCBI ptt file) 117, 394
BC3804 BC3804 Chitooligosaccharide deacetylase (NCBI ptt file) 476, 479
BC3812 BC3812 LSU ribosomal protein L7AE (NCBI ptt file) 71, 476
BC3813 BC3813 hypothetical Cytosolic Protein (NCBI ptt file) 71, 476
BC3814 BC3814 N utilization substance protein A (NCBI ptt file) 366, 476
BC3835 BC3835 Ribonuclease HII (NCBI ptt file) 366, 476
BC3839 BC3839 tRNA (Guanine-N1) -methyltransferase (NCBI ptt file) 182, 476
BC3840 BC3840 16S rRNA processing protein rimM (NCBI ptt file) 182, 476
BC3843 BC3843 Signal recognition particle, subunit Ffh/SRP54 (NCBI ptt file) 252, 476
BC3844 BC3844 Signal recognition particle associated protein (NCBI ptt file) 311, 476
BC3845 BC3845 Cell division protein ftsY (NCBI ptt file) 92, 476
BC3969 BC3969 hypothetical protein (NCBI ptt file) 394, 479
BC4132 BC4132 None 15, 394
BC4262 BC4262 5-formyltetrahydrofolate cyclo-ligase (NCBI ptt file) 41, 394
BC4309 BC4309 surface protein (NCBI ptt file) 467, 476
BC4328 BC4328 hydrolase (HAD superfamily) (NCBI ptt file) 259, 476
BC4329 BC4329 Nicotinate-nucleotide adenylyltransferase (NCBI ptt file) 259, 476
BC4394 BC4394 ATPase, AAA family (NCBI ptt file) 122, 394
BC4426 BC4426 hypothetical Cytosolic Protein (NCBI ptt file) 170, 394
BC4568 BC4568 Multidrug resistance protein B (NCBI ptt file) 285, 394
BC5067 BC5067 CrcB family protein (NCBI ptt file) 285, 394
BC5473 BC5473 IG hypothetical 15508 (NCBI ptt file) 49, 476
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC0544
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend