Organism : Bacillus cereus ATCC14579 | Module List :
BC1519

TPR-repeat-containing protein (NCBI ptt file)

CircVis
Functional Annotations (1)
Function System
binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC1519
(Mouseover regulator name to see its description)

BC1519 is regulated by 23 influences and regulates 0 modules.
Regulators for BC1519 (23)
Regulator Module Operator
BC0586 306 tf
BC0848 306 tf
BC1302 306 tf
BC1489 306 tf
BC1490 306 tf
BC1715 306 tf
BC2794 306 tf
BC3426 306 tf
BC4029 306 tf
BC4222 306 tf
BC4570 306 tf
BC4661 306 tf
BC5171 306 tf
BC0123 286 tf
BC0758 286 tf
BC1449 286 tf
BC1996 286 tf
BC2794 286 tf
BC3072 286 tf
BC3668 286 tf
BC4001 286 tf
BC5265 286 tf
BC5352 286 tf

Warning: BC1519 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4488 1.20e+00 aAGGAgatGa
Loader icon
4489 1.90e+04 ggGaAtAGGga
Loader icon
4526 2.90e+04 CGAcGAGTc
Loader icon
4527 1.50e+04 GGAGGtGC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC1519

BC1519 is enriched for 1 functions in 2 categories.
Enrichment Table (1)
Function System
binding go/ molecular_function
Module neighborhood information for BC1519

BC1519 has total of 46 gene neighbors in modules 286, 306
Gene neighbors (46)
Gene Common Name Description Module membership
BC0572 BC0572 Two-component response regulator (NCBI ptt file) 63, 286
BC0758 BC0758 Transcriptional regulator, MarR family (NCBI ptt file) 47, 286
BC0761 BC0761 ABC transporter permease protein (NCBI ptt file) 286, 427
BC0762 BC0762 hypothetical protein (NCBI ptt file) 286, 427
BC0763 BC0763 ABC transporter permease protein (NCBI ptt file) 286, 427
BC0817 BC0817 hypothetical Membrane Spanning Protein (NCBI ptt file) 306, 505
BC0990 BC0990 hypothetical protein (NCBI ptt file) 202, 306
BC1097 BC1097 hypothetical protein (NCBI ptt file) 63, 286
BC1098 BC1098 hypothetical protein (NCBI ptt file) 286, 427
BC1099 BC1099 hypothetical protein (NCBI ptt file) 26, 286
BC1269 BC1269 hypothetical protein (NCBI ptt file) 286, 427
BC1275 BC1275 Methyltransferase (NCBI ptt file) 47, 286
BC1306 BC1306 ComC protein (NCBI ptt file) 306, 467
BC1484 BC1484 ATP-dependent DNA helicase recQ (NCBI ptt file) 286, 409
BC1519 BC1519 TPR-repeat-containing protein (NCBI ptt file) 286, 306
BC1588 BC1588 Secreted polysaccharide polymerase (NCBI ptt file) 286, 427
BC2262 BC2262 Thioredoxin (NCBI ptt file) 306, 449
BC2372 BC2372 Multidrug resistance ABC transporter ATP-binding and permease protein (NCBI ptt file) 56, 306
BC2407 BC2407 hypothetical protein (NCBI ptt file) 286, 453
BC2556 BC2556 DNA integration/recombination/invertion protein (NCBI ptt file) 286, 511
BC3026 BC3026 Tetracycline resistance protein tetP (NCBI ptt file) 286, 511
BC3107 BC3107 UvrC-like protein (NCBI ptt file) 286, 491
BC3136 BC3136 Integral membrane protein (NCBI ptt file) 254, 306
BC3202 BC3202 hypothetical protein (NCBI ptt file) 306, 467
BC3378 BC3378 Luciferase-like monooxygenase (NCBI ptt file) 306, 394
BC3462 BC3462 hypothetical protein (NCBI ptt file) 268, 306
BC3471 BC3471 hypothetical protein (NCBI ptt file) 243, 306
BC3484 BC3484 Oligoendopeptidase F (NCBI ptt file) 286, 439
BC3595 BC3595 Oxidoreductase (NCBI ptt file) 243, 306
BC3727 BC3727 Formate transporter (NCBI ptt file) 47, 286
BC3747 BC3747 Sensory box/GGDEF family protein (NCBI ptt file) 63, 286
BC4052 BC4052 hydrolase (HAD superfamily) (NCBI ptt file) 262, 306
BC4097 BC4097 2,5-diketo-D-gluconic acid reductase (NCBI ptt file) 302, 306
BC4099 BC4099 hypothetical protein (NCBI ptt file) 233, 286
BC4340 BC4340 NAD(P)H nitroreductase (NCBI ptt file) 47, 286
BC4476 BC4476 GTP-binding protein (NCBI ptt file) 302, 306
BC4674 BC4674 Chorismate mutase (NCBI ptt file) 286, 288
BC4729 BC4729 hypothetical protein (NCBI ptt file) 286, 427
BC4730 BC4730 Homoserine O-acetyltransferase (NCBI ptt file) 286, 398
BC5103 BC5103 Ferric anguibactin transport ATP-binding protein (NCBI ptt file) 56, 306
BC5104 BC5104 Ferric anguibactin transport system permease protein fatC (NCBI ptt file) 56, 306
BC5105 BC5105 Ferric anguibactin transport system permease protein fatD (NCBI ptt file) 56, 306
BC5106 BC5106 Ferric anguibactin-binding protein (NCBI ptt file) 56, 306
BC5233 BC5233 D-alanine aminotransferase (NCBI ptt file) 233, 286
BC5400 BC5400 Bacitracin transport ATP-binding protein bcrA (NCBI ptt file) 237, 286
BC5441 BC5441 Autolysin sensor kinase (NCBI ptt file) 286, 414
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC1519
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend