Organism : Campylobacter jejuni | Module List :
Cj0765c hisS

histidyl-tRNA synthetase (NCBI ptt file)

CircVis
Functional Annotations (7)
Function System
Histidyl-tRNA synthetase cog/ cog
histidine-tRNA ligase activity go/ molecular_function
ATP binding go/ molecular_function
cytoplasm go/ cellular_component
histidyl-tRNA aminoacylation go/ biological_process
Aminoacyl-tRNA biosynthesis kegg/ kegg pathway
hisS tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for Cj0765c
(Mouseover regulator name to see its description)

Warning: No Regulators were found for Cj0765c!

Warning: Cj0765c Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7450 3.70e+00 AGaAAAaacagAAAaagcAaGAAA
Loader icon
7451 2.70e+01 TTTgGCTttg
Loader icon
7714 5.20e+01 ccaTctacAaCAAA
Loader icon
7715 8.60e+02 GGCACACC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for Cj0765c

Cj0765c is enriched for 7 functions in 3 categories.
Enrichment Table (7)
Function System
Histidyl-tRNA synthetase cog/ cog
histidine-tRNA ligase activity go/ molecular_function
ATP binding go/ molecular_function
cytoplasm go/ cellular_component
histidyl-tRNA aminoacylation go/ biological_process
Aminoacyl-tRNA biosynthesis kegg/ kegg pathway
hisS tigr/ tigrfam
Module neighborhood information for Cj0765c

Cj0765c has total of 47 gene neighbors in modules 34, 166
Gene neighbors (47)
Gene Common Name Description Module membership
Cj0066c aroQ 3-dehydroquinate dehydratase (NCBI ptt file) 75, 166
Cj0152c Cj0152c putative membrane protein (NCBI ptt file) 34, 94
Cj0153c Cj0153c putative rRNA methylase (NCBI ptt file) 34, 80
Cj0228c pcm protein-L-isoaspartate O-methyltransferase (NCBI ptt file) 94, 166
Cj0367c Cj0367c putative membrane fusion component of efflux system (NCBI ptt file) 136, 166
Cj0388 trpS tryptophanyl-tRNA synthetase (NCBI ptt file) 63, 166
Cj0639c adk adenylate kinase (NCBI ptt file) 166, 170
Cj0643 Cj0643 putative two-component response regulator (NCBI ptt file) 34, 56
Cj0712 rimM putative 16S rRNA processing protein (NCBI ptt file) 34, 51
Cj0765c hisS histidyl-tRNA synthetase (NCBI ptt file) 34, 166
Cj0838c metS methionyl-tRNA synthetase (NCBI ptt file) 34, 49
Cj0840c fbp putative fructose-1,6-bisphosphatase (NCBI ptt file) 34, 39
Cj0841c Cj0841c putative ATP/GTP binding protein (NCBI ptt file) 25, 34
Cj0844c Cj0844c putative integral membrane protein (NCBI ptt file) 34, 102
Cj1018c livK branched-chain amino-acid ABC transport system periplasmic binding protein (NCBI ptt file) 34, 47
Cj1059c gatA Glu-tRNAGln amidotransferase subunit A (NCBI ptt file) 34, 102
Cj1061c ileS isoleucyl-tRNA synthetase (NCBI ptt file) 34, 94
Cj1149c gmhA phosphoheptose isomerase (NCBI ptt file) 34, 38
Cj1150c waaE putative ADP-heptose synthase (NCBI ptt file) 34, 38
Cj1151c waaD ADP-L-glycero-D-manno-heptose-6-epimerase (NCBI ptt file) 34, 166
Cj1152c Cj1152c putative phosphatase (NCBI ptt file) 34, 38
Cj1156 rho transcription termination factor (NCBI ptt file) 51, 166
Cj1184c petC putative ubiquinol-cytochrome C reductase cytochrome C subunit (NCBI ptt file) 34, 82
Cj1185c petB putative ubiquinol-cytochrome C reductase cytochrome B subunit (NCBI ptt file) 34, 82
Cj1186c petA putative ubiquinol-cytochrome C reductase iron-sulfur subunit (NCBI ptt file) 34, 82
Cj1196c gpsA glycerol-3-phosphate dehydrogenase [NAD(P)+] (NCBI ptt file) 95, 166
Cj1204c atpB ATP synthase F0 sector A subunit (NCBI ptt file) 160, 166
Cj1288c gltX2 glutamyl-tRNA synthetase (NCBI ptt file) 34, 160
Cj1289 Cj1289 possible periplasmic protein (NCBI ptt file) 34, 61
Cj1335 maf4 motility accessory factor (function unknown) (NCBI) 138, 166
Cj1369 Cj1369 putative transmembrane transport protein (NCBI ptt file) 34, 95
Cj1506c Cj1506c putative MCP-type signal transduction protein (NCBI ptt file) 20, 34
Cj1511c fdhA putative formate dehydrogenase large subunit (Selenocysteine containing) (NCBI ptt file) 95, 166
Cj1564 Cj1564 putative methyl-accepting chemotaxis signal transduction protein (NCBI ptt file) 20, 34
Cj1566c nuoN NADH dehydrogenase I chain N (NCBI ptt file) 18, 166
Cj1567c nuoM NADH dehydrogenase I chain M (NCBI ptt file) 26, 166
Cj1568c nuoL NADH dehydrogenase I chain L (NCBI ptt file) 166, 169
Cj1569c nuoK NADH dehydrogenase I chain K (NCBI ptt file) 52, 166
Cj1571c nuoI NADH dehydrogenase I chain I (NCBI ptt file) 10, 166
Cj1572c nuoH NADH dehydrogenase I chain H (NCBI ptt file) 94, 166
Cj1573c nuoG probable NADH dehydrogenase I chain G (NCBI ptt file) 69, 166
Cj1576c nuoD NADH dehydrogenase I chain D (NCBI ptt file) 95, 166
Cj1577c nuoC NADH dehydrogenase I chain C (NCBI ptt file) 94, 166
Cj1578c nuoB NADH dehydrogenase I chain B (NCBI ptt file) 95, 166
Cj1579c nuoA NADH dehydrogenase I chain A (NCBI ptt file) 95, 166
Cj1585c Cj1585c putative oxidoreductase (NCBI ptt file) 34, 39
Cj1590 infA translation initiation factor IF-1 (NCBI ptt file) 34, 94
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for Cj0765c
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend