Organism : Campylobacter jejuni | Module List :
Cj1149c gmhA

phosphoheptose isomerase (NCBI ptt file)

CircVis
Functional Annotations (8)
Function System
Phosphoheptose isomerase cog/ cog
sugar binding go/ molecular_function
cytoplasm go/ cellular_component
D-sedoheptulose 7-phosphate isomerase activity go/ molecular_function
lipopolysaccharide core region biosynthetic process go/ biological_process
Lipopolysaccharide biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
gmhA tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for Cj1149c
(Mouseover regulator name to see its description)

Cj1149c is regulated by 2 influences and regulates 0 modules.
Regulators for Cj1149c gmhA (2)
Regulator Module Operator
Cj0480c 38 tf
Cj1103 38 tf

Warning: Cj1149c Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7450 3.70e+00 AGaAAAaacagAAAaagcAaGAAA
Loader icon
7451 2.70e+01 TTTgGCTttg
Loader icon
7458 2.10e+01 gcTTTtGC
Loader icon
7459 7.50e+02 TgGGGgtaaGgtAA.tcgctcg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for Cj1149c

Cj1149c is enriched for 8 functions in 3 categories.
Enrichment Table (8)
Function System
Phosphoheptose isomerase cog/ cog
sugar binding go/ molecular_function
cytoplasm go/ cellular_component
D-sedoheptulose 7-phosphate isomerase activity go/ molecular_function
lipopolysaccharide core region biosynthetic process go/ biological_process
Lipopolysaccharide biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
gmhA tigr/ tigrfam
Module neighborhood information for Cj1149c

Cj1149c has total of 43 gene neighbors in modules 34, 38
Gene neighbors (43)
Gene Common Name Description Module membership
Cj0029 ansA cytoplasmic L-asparaginase (NCBI ptt file) 38, 113
Cj0072c Cj0072c None 38, 164
Cj0136 infB translation initiation factor IF-2 (NCBI ptt file) 38, 125
Cj0152c Cj0152c putative membrane protein (NCBI ptt file) 34, 94
Cj0153c Cj0153c putative rRNA methylase (NCBI ptt file) 34, 80
Cj0163c Cj0163c hypothetical protein Cj0163c (NCBI ptt file) 38, 41
Cj0456c Cj0456c hypothetical protein Cj0456c (NCBI ptt file) 38, 78
Cj0590 Cj0590 hypothetical protein Cj0590 (NCBI ptt file) 27, 38
Cj0643 Cj0643 putative two-component response regulator (NCBI ptt file) 34, 56
Cj0712 rimM putative 16S rRNA processing protein (NCBI ptt file) 34, 51
Cj0765c hisS histidyl-tRNA synthetase (NCBI ptt file) 34, 166
Cj0838c metS methionyl-tRNA synthetase (NCBI ptt file) 34, 49
Cj0840c fbp putative fructose-1,6-bisphosphatase (NCBI ptt file) 34, 39
Cj0841c Cj0841c putative ATP/GTP binding protein (NCBI ptt file) 25, 34
Cj0844c Cj0844c putative integral membrane protein (NCBI ptt file) 34, 102
Cj0861c pabA para-aminobenzoate synthase glutamine amidotransferase component II (NCBI ptt file) 38, 152
Cj0916c Cj0916c hypothetical protein Cj0916c (NCBI ptt file) 38, 50
Cj1018c livK branched-chain amino-acid ABC transport system periplasmic binding protein (NCBI ptt file) 34, 47
Cj1059c gatA Glu-tRNAGln amidotransferase subunit A (NCBI ptt file) 34, 102
Cj1061c ileS isoleucyl-tRNA synthetase (NCBI ptt file) 34, 94
Cj1103 csrA carbon storage regulator homolog (NCBI ptt file) 38, 57
Cj1129c wlaC putative glycosyltransferase (NCBI ptt file) 38, 62
Cj1149c gmhA phosphoheptose isomerase (NCBI ptt file) 34, 38
Cj1150c waaE putative ADP-heptose synthase (NCBI ptt file) 34, 38
Cj1151c waaD ADP-L-glycero-D-manno-heptose-6-epimerase (NCBI ptt file) 34, 166
Cj1152c Cj1152c putative phosphatase (NCBI ptt file) 34, 38
Cj1184c petC putative ubiquinol-cytochrome C reductase cytochrome C subunit (NCBI ptt file) 34, 82
Cj1185c petB putative ubiquinol-cytochrome C reductase cytochrome B subunit (NCBI ptt file) 34, 82
Cj1186c petA putative ubiquinol-cytochrome C reductase iron-sulfur subunit (NCBI ptt file) 34, 82
Cj1203c Cj1203c putative integral membrane protein (NCBI ptt file) 38, 41
Cj1223c Cj1223c putative two-component regulator (NCBI ptt file) 38, 41
Cj1258 Cj1258 possible phosphotyrosine protein phosphatase (NCBI ptt file) 38, 81
Cj1288c gltX2 glutamyl-tRNA synthetase (NCBI ptt file) 34, 160
Cj1289 Cj1289 possible periplasmic protein (NCBI ptt file) 34, 61
Cj1312 Cj1312 possible flagellar protein (NCBI ptt file) 38, 81
Cj1369 Cj1369 putative transmembrane transport protein (NCBI ptt file) 34, 95
Cj1492c Cj1492c putative two-component sensor (NCBI ptt file) 38, 60
Cj1506c Cj1506c putative MCP-type signal transduction protein (NCBI ptt file) 20, 34
Cj1564 Cj1564 putative methyl-accepting chemotaxis signal transduction protein (NCBI ptt file) 20, 34
Cj1585c Cj1585c putative oxidoreductase (NCBI ptt file) 34, 39
Cj1590 infA translation initiation factor IF-1 (NCBI ptt file) 34, 94
Cj1673c recA recA protein (NCBI ptt file) 38, 110
Cj1720 Cj1720 hypothetical protein Cj1720 (NCBI ptt file) 38, 71
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for Cj1149c
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend