Organism : Campylobacter jejuni | Module List :
VIMSS47201

None

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for VIMSS47201
(Mouseover regulator name to see its description)

VIMSS47201 is regulated by 4 influences and regulates 0 modules.
Regulators for VIMSS47201 (4)
Regulator Module Operator
Cj0061c 22 tf
Cj0670 22 tf
Cj1230 22 tf
Cj1546 22 tf

Warning: VIMSS47201 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7426 4.30e-06 CAagTctcCtAGcGgT
Loader icon
7427 9.20e-04 TAGCTCAGttGg
Loader icon
7452 7.00e+03 GGCaGT
Loader icon
7453 1.10e+04 At..tAaAATaCt
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for VIMSS47201

Warning: No Functional annotations were found!

Module neighborhood information for VIMSS47201

VIMSS47201 has total of 36 gene neighbors in modules 22, 35
Gene neighbors (36)
Gene Common Name Description Module membership
Cj0010c rnhB ribonuclease HII (NCBI ptt file) 22, 50
Cj0046 Cj0046 None 35, 64
Cj0063c Cj0063c putative ATP-binding protein (NCBI ptt file) 35, 120
Cj0064c flhF flagellar biosynthesis protein (NCBI ptt file) 35, 169
Cj0122 Cj0122 hypothetical protein Cj0122 (NCBI ptt file) 22, 105
Cj0134 thrB homoserine kinase (NCBI ptt file) 22, 23
Cj0395c Cj0395c hypothetical protein Cj0395c (NCBI ptt file) 6, 35
Cj0397c Cj0397c hypothetical protein Cj0397c (NCBI ptt file) 35, 129
Cj0430 Cj0430 putative integral membrane protein (NCBI ptt file) 22, 105
Cj0448c Cj0448c putative MCP-type signal transduction protein (NCBI ptt file) 35, 119
Cj0481 Cj0481 putative lyase (NCBI ptt file) 28, 35
Cj0485 Cj0485 putative oxidoreductase (NCBI ptt file) 28, 35
Cj0487 Cj0487 hypothetical protein Cj0487 (NCBI ptt file) 28, 35
Cj0488 Cj0488 hypothetical protein Cj0488 (NCBI ptt file) 28, 35
Cj0489 ald' putative aldehyde dehydrogenase N-terminus (RefSeq) 35, 53
Cj0490 ald' putative aldehyde dehydrogenase C-terminus (RefSeq) 28, 35
Cj0494 Cj0494 hypothetical protein Cj0494 (NCBI ptt file) 35, 94
Cj0496 Cj0496 hypothetical protein Cj0496 (NCBI ptt file) 35, 133
Cj0501 Cj0501 None 28, 35
Cj0601c Cj0601c putative sodium-dependent transmembrane transport protein (NCBI ptt file) 22, 49
Cj0776c Cj0776c putative periplasmic protein (NCBI ptt file) 35, 59
Cj0863c xerD DNA recombinase (NCBI ptt file) 35, 95
Cj1102 truB tRNA pseudouridine synthase B (NCBI ptt file) 22, 105
Cj1523c Cj1523c hyopthetical protein Cj1523c (NCBI ptt file) 32, 35
Cjp17 tRNA-Gly tRNA-Gly (NCBI) 22, 108
Cjp19 tRNA-Val tRNA-Val (NCBI) 16, 22
Cjp28 tRNA-Leu tRNA-Leu (NCBI) 22, 124
Cjp32 tRNA-His tRNA-His (NCBI) 4, 22
Cjp36 tRNA-Val tRNA-Val (NCBI) 4, 22
Cjt06 tRNA-Ser tRNA-Ser (NCBI) 16, 22
VIMSS46110 VIMSS46110 None 2, 22
VIMSS46406 VIMSS46406 None 19, 35
VIMSS46541 VIMSS46541 None 2, 22
VIMSS47201 VIMSS47201 None 22, 35
VIMSS47211 VIMSS47211 None 35, 117
VIMSS47417 VIMSS47417 None 22, 120
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for VIMSS47201
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend