Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU0925 rfbA

glucose-1-phosphate thymidylyltransferase

CircVis
Functional Annotations (8)
Function System
dTDP-glucose pyrophosphorylase cog/ cog
glucose-1-phosphate thymidylyltransferase activity go/ molecular_function
extracellular polysaccharide biosynthetic process go/ biological_process
Streptomycin biosynthesis kegg/ kegg pathway
Polyketide sugar unit biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
rmlA tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for DVU0925
(Mouseover regulator name to see its description)

DVU0925 is regulated by 19 influences and regulates 0 modules.
Regulators for DVU0925 rfbA (19)
Regulator Module Operator
DVU0309
DVU0539
331 combiner
DVU0936
DVU1584
331 combiner
DVU2106 331 tf
DVU2423 331 tf
DVU2802
DVU2989
331 combiner
DVU3080 331 tf
DVU3186 331 tf
DVUA0151
DVU1730
331 combiner
DVU0916 332 tf
DVU0916
DVU1745
332 combiner
DVU1628
DVU0916
332 combiner
DVU1645
DVU0916
332 combiner
DVU1690 332 tf
DVU2686 332 tf
DVU2686
DVU1584
332 combiner
DVU2827 332 tf
DVU2836
DVU1628
332 combiner
DVU3080 332 tf
DVU3255
DVU3186
332 combiner

Warning: DVU0925 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.

Motif Table (4)
Motif Id e-value Consensus Motif Logo RegPredict
629 2.80e+00 aaaTGACtAaAAaGaGTaTaTA
Loader icon
RegPredict
630 2.60e+00 CGTcaaTAtCaatCcAcAG.TtcC
Loader icon
RegPredict
631 7.40e+00 tctTttc.TTT
Loader icon
RegPredict
632 1.30e+03 GggtGccgTTG
Loader icon
RegPredict
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for DVU0925

DVU0925 is enriched for 8 functions in 3 categories.
Enrichment Table (8)
Function System
dTDP-glucose pyrophosphorylase cog/ cog
glucose-1-phosphate thymidylyltransferase activity go/ molecular_function
extracellular polysaccharide biosynthetic process go/ biological_process
Streptomycin biosynthesis kegg/ kegg pathway
Polyketide sugar unit biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
rmlA tigr/ tigrfam
Module neighborhood information for DVU0925

DVU0925 has total of 44 gene neighbors in modules 331, 332
Gene neighbors (44)
Gene Common Name Description Module membership
DVU0073 CDP-glucose-4,6-dehydratase 331, 337
DVU0293 dksA/traR C4-type zinc finger family protein 251, 331
DVU0302 chemotaxis protein CheX 232, 332
DVU0428 hypothetical protein DVU0428 14, 331
DVU0605 hypothetical protein DVU0605 92, 331
DVU0645 methyl-accepting chemotaxis protein 103, 331
DVU0674 His/Glu/Gln/Arg/opine ABC transporter permease 309, 332
DVU0690 hypothetical protein DVU0690 272, 332
DVU0712 amino acid ABC transporter periplasmic-binding protein 262, 331
DVU0714 branched-chain amino acid ABC transporter permease 331, 347
DVU0715 branched-chain amino acid ABC transporter ATP binding protein 215, 331
DVU0716 branched-chain amino acid ABC transporter ATP-binding protein 215, 331
DVU0789 mreB-1 rod shape-determining protein MreB 282, 332
DVU0875 fumarylacetoacetate hydrolase family protein 318, 331
DVU0902 hypothetical protein 175, 331
DVU0925 rfbA glucose-1-phosphate thymidylyltransferase 331, 332
DVU0939 hypothetical protein DVU0939 8, 332
DVU1014 hypothetical protein DVU1014 267, 331
DVU1108 hypothetical protein DVU1108 239, 331
DVU1109 ATPase 266, 331
DVU1409 hypothetical protein DVU1409 56, 332
DVU1479 hypothetical protein DVU1479 246, 331
DVU1572 CarD family transcriptional regulator 16, 332
DVU1631 hypothetical protein DVU1631 330, 332
DVU1633 PTS system transporter subunit IIB 330, 332
DVU1634 hypothetical protein DVU1634 330, 332
DVU1661 hypothetical protein DVU1661 29, 331
DVU1679 idi isopentenyl-diphosphate delta-isomerase 279, 332
DVU1746 C-5 cytosine-specific DNA methylase family protein 306, 331
DVU1801 hypothetical protein DVU1801 279, 332
DVU1832 hypothetical protein DVU1832 332, 339
DVU1833 phosphoenolpyruvate synthase 44, 331
DVU1837 competence protein 331, 332
DVU1845 hypothetical protein DVU1845 332, 337
DVU1894 hypothetical protein DVU1894 132, 332
DVU2308 hypothetical protein DVU2308 215, 332
DVU2354 glycosyl transferase group 2 family protein 283, 332
DVU2452 hypothetical protein DVU2452 263, 331
DVU2532 MerR family transcriptional regulator 232, 332
DVU2617 sodium/calcium exchanger family protein 116, 331
DVU3117 hypothetical protein DVU3117 308, 332
DVU3226 hypothetical protein DVU3226 71, 332
DVU3228 cheY-3 chemotaxis protein CheY 157, 332
DVU3288 hypothetical protein DVU3288 225, 331
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for DVU0925
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend