Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU1196 leuS

leucyl-tRNA synthetase

CircVis
Functional Annotations (8)
Function System
Leucyl-tRNA synthetase cog/ cog
leucine-tRNA ligase activity go/ molecular_function
ATP binding go/ molecular_function
cytoplasm go/ cellular_component
leucyl-tRNA aminoacylation go/ biological_process
Valine leucine and isoleucine biosynthesis kegg/ kegg pathway
Aminoacyl-tRNA biosynthesis kegg/ kegg pathway
leuS_bact tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for DVU1196
(Mouseover regulator name to see its description)

DVU1196 is regulated by 17 influences and regulates 0 modules.
Regulators for DVU1196 leuS (17)
Regulator Module Operator
DVU1628
DVU1964
65 combiner
DVU1949 65 tf
DVU2675 65 tf
DVU2788
DVU0629
65 combiner
DVU2788
DVU2557
65 combiner
DVU2788
DVU3186
65 combiner
DVU2799
DVU1628
65 combiner
DVU2799
DVU2394
65 combiner
DVU3313 65 tf
DVU0619
DVU0525
169 combiner
DVU0619
DVU3381
169 combiner
DVU0744
DVU0230
169 combiner
DVU1518
DVU2086
169 combiner
DVU2086
DVU2832
169 combiner
DVU2532
DVU0653
169 combiner
DVU3167
DVU0063
169 combiner
DVU3167
DVU1572
169 combiner

Warning: DVU1196 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.

Motif Table (4)
Motif Id e-value Consensus Motif Logo RegPredict
127 8.30e+00 GaatCGgCatCgtAtgacA
Loader icon
RegPredict
128 3.70e+00 cATgcgGgAtGTtcCgcCggcag
Loader icon
RegPredict
323 9.00e-06 AAGaGaatGagGtcTtaTaCC
Loader icon
RegPredict
324 2.90e-04 aAcctGTGCaggGctggcGAcAtg
Loader icon
RegPredict
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for DVU1196

DVU1196 is enriched for 8 functions in 3 categories.
Enrichment Table (8)
Function System
Leucyl-tRNA synthetase cog/ cog
leucine-tRNA ligase activity go/ molecular_function
ATP binding go/ molecular_function
cytoplasm go/ cellular_component
leucyl-tRNA aminoacylation go/ biological_process
Valine leucine and isoleucine biosynthesis kegg/ kegg pathway
Aminoacyl-tRNA biosynthesis kegg/ kegg pathway
leuS_bact tigr/ tigrfam
Module neighborhood information for DVU1196

DVU1196 has total of 56 gene neighbors in modules 65, 169
Gene neighbors (56)
Gene Common Name Description Module membership
DVU0182 radical SAM domain-containing protein 65, 254
DVU0286 hisF imidazole glycerol phosphate synthase subunit HisF 15, 65
DVU0333 hypothetical protein DVU0333 65, 137
DVU0703 lepA GTP-binding protein LepA 28, 65
DVU0868 cdsA phosphatidate cytidylyltransferase 28, 65
DVU0871 pyrH uridylate kinase 28, 65
DVU0988 carbohydrate kinase 23, 65
DVU0990 endonuclease III 23, 65
DVU0991 hypothetical protein DVU0991 23, 65
DVU1002 hypothetical protein DVU1002 169, 172
DVU1003 dnaJ domain-containing protein 169, 172
DVU1054 HAD superfamily hydrolase 65, 230
DVU1071 hypothetical protein DVU1071 65, 261
DVU1194 hypothetical protein DVU1194 169, 308
DVU1195 lipoprotein 29, 169
DVU1196 leuS leucyl-tRNA synthetase 65, 169
DVU1197 nusB N utilization substance protein B 65, 248
DVU1198 ribH 6,7-dimethyl-8-ribityllumazine synthase 169, 248
DVU1200 ribE riboflavin synthase subunit alpha 169, 308
DVU1201 ribD riboflavin biosynthesis protein RibD 94, 169
DVU1202 cytidine/deoxycytidylate deaminase family protein 10, 169
DVU1203 glyA serine hydroxymethyltransferase 169, 248
DVU1204 fabF 3-oxoacyl-ACP synthase 169, 248
DVU1205 acpP acyl carrier protein 169, 323
DVU1206 fabG 3-oxoacyl-ACP reductase 169, 323
DVU1207 fabH 3-oxoacyl-ACP synthase 10, 169
DVU1209 rpmF 50S ribosomal protein L32 169, 308
DVU1210 hypothetical protein DVU1210 28, 169
DVU1211 rpmB 50S ribosomal protein L28 169, 308
DVU1214 dolichyl-phosphate-mannose-protein mannosyltransferase family protein 65, 294
DVU1215 PAP2 family protein 65, 278
DVU1251 hypothetical protein DVU1251 65, 270
DVU1272 general secretion pathway protein E 65, 221
DVU1273 type II/III secretion system protein 65, 270
DVU1275 hypothetical protein DVU1275 65, 221
DVU1352 6-pyruvoyl tetrahydrobiopterin synthase 65, 291
DVU1353 dnaE DNA polymerase III subunit alpha 65, 172
DVU1395 C4-type zinc finger DksA/TraR family protein 65, 254
DVU1599 crcB crcB protein 65, 337
DVU1621 hypothetical protein DVU1621 28, 65
DVU1780 hypothetical protein DVU1780 169, 229
DVU1781 hypothetical protein DVU1781 169, 229
DVU1782 iron-sulfur cluster-binding protein 169, 229
DVU1783 hypothetical protein DVU1783 169, 229
DVU1784 short chain dehydrogenase/reductase family oxidoreductase 169, 229
DVU1785 MarC membrane protein 169, 229
DVU1878 ltaE threonine aldolase 65, 270
DVU1879 glycosyl transferase group 1 family protein 65, 270
DVU1891 hypothetical protein DVU1891 27, 169
DVU1907 ugd UDP-glucose 6-dehydrogenase 65, 251
DVU2135 hypothetical protein DVU2135 65, 208
DVU2224 hypothetical protein DVU2224 65, 86
DVU2258 ruvC Holliday junction resolvase 65, 119
DVU3066 DNA-binding protein 65, 270
DVU3176 UDP-glucose/GDP-mannose dehydrogenase family protein 169, 292
DVU3177 hypothetical protein DVU3177 145, 169
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for DVU1196
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend