Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU1295 sat
sulfate adenylyltransferase
Functional Annotations (11)
Function | System |
---|---|
ATP sulfurylase (sulfate adenylyltransferase) | cog/ cog |
sulfate assimilation | go/ biological_process |
sulfate adenylyltransferase (ATP) activity | go/ molecular_function |
sulfur compound metabolic process | go/ biological_process |
sulfate adenylyltransferase complex (ATP) | go/ cellular_component |
Purine metabolism | kegg/ kegg pathway |
Selenocompound metabolism | kegg/ kegg pathway |
Sulfur metabolism | kegg/ kegg pathway |
Metabolic pathways | kegg/ kegg pathway |
Microbial metabolism in diverse environments | kegg/ kegg pathway |
sopT | tigr/ tigrfam |
Regulation information for DVU1295
(Mouseover regulator name to see its description)
Regulator | Module | Operator |
---|---|---|
DVU0744 DVU2690 |
74 | combiner |
DVU2275 | 74 | tf |
DVU2690 | 74 | tf |
DVU2802 DVU0057 |
74 | combiner |
DVU2802 DVU0539 |
74 | combiner |
DVU2802 DVU1142 |
74 | combiner |
DVU2802 DVU2799 |
74 | combiner |
DVU2802 DVU3334 |
74 | combiner |
DVU2802 DVU3381 |
74 | combiner |
DVU0230 | 31 | tf |
DVU0653 | 31 | tf |
DVU0653 DVU2114 |
31 | combiner |
DVU0682 DVU0653 |
31 | combiner |
DVU1561 DVU0539 |
31 | combiner |
DVU2036 DVU2114 |
31 | combiner |
DVU2423 DVU3142 |
31 | combiner |
DVU3142 | 31 | tf |
DVU3255 DVU1690 |
31 | combiner |
DVUA0151 DVU1561 |
31 | combiner |
Motif information (de novo identified motifs for modules)
There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.
Motif Id | e-value | Consensus | Motif Logo | RegPredict |
---|---|---|---|---|
61 | 0.00e+00 | atgt.tAtTttTTt....ttgtA | RegPredict | |
62 | 1.20e-01 | cCaTgTtgTtaaAaaAacCAcaAA | RegPredict | |
145 | 1.60e-02 | cTTgTcctaaAatTCAcAa | RegPredict | |
146 | 1.50e+02 | AtCaaCaTaAGgCga | RegPredict |
Functional Enrichment for DVU1295
Function | System |
---|---|
ATP sulfurylase (sulfate adenylyltransferase) | cog/ cog |
sulfate assimilation | go/ biological_process |
sulfate adenylyltransferase (ATP) activity | go/ molecular_function |
sulfur compound metabolic process | go/ biological_process |
sulfate adenylyltransferase complex (ATP) | go/ cellular_component |
Purine metabolism | kegg/ kegg pathway |
Selenocompound metabolism | kegg/ kegg pathway |
Sulfur metabolism | kegg/ kegg pathway |
Metabolic pathways | kegg/ kegg pathway |
Microbial metabolism in diverse environments | kegg/ kegg pathway |
sopT | tigr/ tigrfam |
Module neighborhood information for DVU1295
Gene | Common Name | Description | Module membership |
---|---|---|---|
DVU0025 | sensory box histidine kinase | 31, 281 | |
DVU0109 | sensor histidine kinase | 31, 311 | |
DVU0139 | sensor histidine kinase | 31, 97 | |
DVU0294 | glycosyl transferase group 2 family protein | 31, 105 | |
DVU0317 | hypothetical protein DVU0317 | 31, 286 | |
DVU0445 | CBS domain-containing protein | 31, 299 | |
DVU0578 | formate dehydrogenase accessory protein FdhD | 31, 281 | |
DVU0692 | molybdopterin oxidoreductase, transmembrane subunit | 74, 266 | |
DVU0693 | molybdopterin oxidoreductase, iron-sulfur cluster-binding subunit | 74, 266 | |
DVU0694 | molybdopterin oxidoreductase, molybdopterin-binding subunit | 74, 266 | |
DVU0717 | GGDEF domain/EAL domain-containing protein | 31, 283 | |
DVU0774 | atpC | F0F1 ATP synthase subunit epsilon | 74, 319 |
DVU0775 | atpD | F0F1 ATP synthase subunit beta | 74, 319 |
DVU0776 | atpG | F0F1 ATP synthase subunit gamma | 74, 319 |
DVU0777 | atpA | F0F1 ATP synthase subunit alpha | 74, 319 |
DVU0779 | ATP synthase F0 subunit B | 74, 319 | |
DVU0780 | ATP synthase F0 subunit B' | 74, 319 | |
DVU0845 | hypothetical protein DVU0845 | 74, 319 | |
DVU0846 | aprB | adenylylsulphate reductase subunit beta | 74, 319 |
DVU0847 | aprA | adenylylsulfate reductase subunit alpha | 74, 319 |
DVU0848 | heterodisulfide reductase | 74, 319 | |
DVU0849 | heterodisulfide reductase, iron-sulfur-binding subunit | 74, 319 | |
DVU0850 | heterodisulfide reductase, transmembrane subunit | 74, 319 | |
DVU0851 | hypothetical protein DVU0851 | 74, 319 | |
DVU0917 | atpE | ATP synthase F0 subunit C | 74, 266 |
DVU0918 | atpB | ATP synthase F0 subunit A | 74, 319 |
DVU0919 | hypothetical protein DVU0919 | 74, 266 | |
DVU1079 | trmE | tRNA modification GTPase TrmE | 31, 82 |
DVU1228 | tpX | thiol peroxidase | 31, 216 |
DVU1230 | hypothetical protein DVU1230 | 31, 256 | |
DVU1231 | amt | ammonium transporter | 31, 256 |
DVU1232 | glnB-1 | nitrogen regulatory protein P-II | 31, 215 |
DVU1264 | transglycosylase | 74, 266 | |
DVU1294 | hypothetical protein DVU1294 | 74, 154 | |
DVU1295 | sat | sulfate adenylyltransferase | 31, 74 |
DVU1296 | hypothetical protein DVU1296 | 74, 266 | |
DVU1534 | hypothetical protein DVU1534 | 31, 175 | |
DVU1535 | hypothetical protein DVU1535 | 31, 105 | |
DVU1563 | sensory box histidine kinase/response regulator | 31, 324 | |
DVU1636 | ppaC | manganese-dependent inorganic pyrophosphatase | 74, 319 |
DVU1654 | phage integrase family site specific recombinase | 31, 86 | |
DVU1731 | hypothetical protein DVU1731 | 31, 267 | |
DVU1872 | hypothetical protein DVU1872 | 31, 100 | |
DVU1932 | adk | adenylate kinase | 74, 266 |
DVU2040 | hypothetical protein DVU2040 | 31, 273 | |
DVU2268 | hypothetical protein DVU2268 | 31, 261 | |
DVU2989 | pspF | psp operon transcriptional activator | 13, 31 |
DVU3132 | glycerol-3-phosphate dehydrogenase, FAD-dependent | 31, 203 | |
DVU3269 | sensory box histidine kinase/response regulator | 31, 281 | |
DVU3385 | hypothetical protein DVU3385 | 31, 103 |
Gene Page Help
Network Tab
If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.
Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.
Regulation Tab
Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.
If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.
You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".
For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.
Motifs Tab
Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.
Functions Tab
Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.
Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.
Module Members Tab
Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.
Help Tab
This help page. More general help can be accessed by clicking help menu in the main navigation bar.
CircVis
Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;- 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
- 2. Source gene
- 3. Target genes (other module members)
- 4. Interactions between source and target genes for a particular module
- 5. Module(s) that source gene and target genes belong to
- 6. Visualisation legend
Social Tab
Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.
Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.
In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.