Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU2087

hypothetical protein DVU2087

CircVis
Functional Annotations (3)
Function System
Uncharacterized conserved protein cog/ cog
cysteine-type endopeptidase activity go/ molecular_function
proteolysis go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for DVU2087
(Mouseover regulator name to see its description)

DVU2087 is regulated by 12 influences and regulates 0 modules.
Regulators for DVU2087 (12)
Regulator Module Operator
DVU2106
DVU2251
196 combiner
DVU2251
DVU3066
196 combiner
DVU2989 196 tf
DVU1517
DVU0539
33 combiner
DVU1754
DVU2111
33 combiner
DVU2036
DVU2097
33 combiner
DVU2036
DVU2633
33 combiner
DVU2788
DVU2114
33 combiner
DVU2909
DVU1517
33 combiner
DVU3142 33 tf
DVUA0024 33 tf
DVUA0143 33 tf

Warning: DVU2087 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.

Motif Table (4)
Motif Id e-value Consensus Motif Logo RegPredict
65 5.10e+02 aTaGgAtAtTTcTT
Loader icon
RegPredict
66 2.30e+02 tTGtCctttagctTggggtGTgt
Loader icon
RegPredict
375 2.40e+01 aa..tcaa...Ttgcac.aaAaaa
Loader icon
RegPredict
376 2.10e+02 TTccacatcaa
Loader icon
RegPredict
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for DVU2087

DVU2087 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
Uncharacterized conserved protein cog/ cog
cysteine-type endopeptidase activity go/ molecular_function
proteolysis go/ biological_process
Module neighborhood information for DVU2087

DVU2087 has total of 48 gene neighbors in modules 33, 196
Gene neighbors (48)
Gene Common Name Description Module membership
DVU0126 ABC transporter ATP-binding protein 33, 181
DVU0541 lipoprotein 33, 285
DVU0802 hypothetical protein DVU0802 33, 121
DVU0973 4-hydroxybenzoate octaprenyltransferase 33, 83
DVU0993 hypothetical protein DVU0993 33, 121
DVU1056 cobalt ABC transporter ATP-binding protein 33, 327
DVU1150 hypothetical protein DVU1150 33, 334
DVU1172 hypothetical protein DVU1172 33, 174
DVU1173 mviN-1 integral membrane protein MviN 33, 181
DVU1280 hypothetical protein DVU1280 33, 330
DVU1347 M24/M37 family peptidase 33, 327
DVU1408 hypothetical protein DVU1408 63, 196
DVU1653 polyA polymerase family protein 196, 220
DVU1744 DNA-binding protein 33, 181
DVU1762 hypothetical protein DVU1762 33, 343
DVU1857 methyl-accepting chemotaxis protein 33, 122
DVU1908 pdxJ pyridoxine 5'-phosphate synthase 33, 150
DVU1914 alpha-isopropylmalate/homocitrate synthase family transferase 172, 196
DVU1934 phosphonate ABC transporter permease 33, 262
DVU1985 hypothetical protein DVU1985 196, 226
DVU1990 hypothetical protein DVU1990 146, 196
DVU2009 hypothetical protein DVU2009 196, 273
DVU2012 hypothetical protein DVU2012 196, 273
DVU2015 hypothetical protein DVU2015 196, 273
DVU2016 GGDEF domain-containing protein 196, 273
DVU2027 hypothetical protein DVU2027 196, 273
DVU2032 ERF family protein 196, 344
DVU2034 hypothetical protein DVU2034 196, 273
DVU2038 hypothetical protein DVU2038 196, 273
DVU2044 hypothetical protein DVU2044 167, 196
DVU2045 hypothetical protein DVU2045 196, 273
DVU2047 hypothetical protein DVU2047 196, 273
DVU2049 None 196, 337
DVU2057 hypothetical protein DVU2057 196, 217
DVU2060 hypothetical protein DVU2060 33, 71
DVU2087 hypothetical protein DVU2087 33, 196
DVU2088 hypothetical protein DVU2088 33, 53
DVU2089 hypothetical protein DVU2089 66, 196
DVU2306 phosphate transporter family protein 33, 154
DVU2447 hypothetical protein DVU2447 33, 81
DVU2627 hypothetical protein DVU2627 14, 33
DVU2700 hypothetical protein DVU2700 33, 69
DVU2949 hypothetical protein DVU2949 33, 334
DVU3038 hypothetical protein DVU3038 33, 121
DVU3039 hypothetical protein DVU3039 33, 343
DVU3115 hypothetical protein DVU3115 33, 334
DVU3175 hypothetical protein DVU3175 33, 327
DVU3180 GGDEF domain-containing protein 33, 87
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for DVU2087
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend