Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU2980 pssA

CDP-diacylglycerol--serine O-phosphatidyltransferase

CircVis
Functional Annotations (9)
Function System
Phosphatidylserine synthase cog/ cog
CDP-diacylglycerol-serine O-phosphatidyltransferase activity go/ molecular_function
phosphatidylcholine biosynthetic process go/ biological_process
phospholipid biosynthetic process go/ biological_process
membrane go/ cellular_component
Glycine serine and threonine metabolism kegg/ kegg pathway
Glycerophospholipid metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
pssA tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for DVU2980
(Mouseover regulator name to see its description)

DVU2980 is regulated by 20 influences and regulates 0 modules.
Regulators for DVU2980 pssA (20)
Regulator Module Operator
DVU1156 308 tf
DVU1331
DVU0916
308 combiner
DVU1572 308 tf
DVU1572
DVU2114
308 combiner
DVU2114 308 tf
DVU2675
DVU3186
308 combiner
DVU2799 308 tf
DVU3167
DVU1760
308 combiner
DVU3167
DVU2114
308 combiner
DVU3186 308 tf
DVU3255
DVU1144
308 combiner
DVU0110 145 tf
DVU0230 145 tf
DVU0653
DVU1063
145 combiner
DVU0653
DVU1690
145 combiner
DVU1517 145 tf
DVU1518
DVU2086
145 combiner
DVU1628 145 tf
DVU1754
DVU3381
145 combiner
DVU2532
DVU0653
145 combiner

Warning: DVU2980 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.

Motif Table (4)
Motif Id e-value Consensus Motif Logo RegPredict
277 3.80e-01 atttctTgaTTgatcAaACagttt
Loader icon
RegPredict
278 1.90e+02 cCcTgAccAcGcAac
Loader icon
RegPredict
589 9.70e-01 AtACCctgactgcGGAAAAtgCAA
Loader icon
RegPredict
590 1.60e+02 CcCCgGgCA.GGc.T
Loader icon
RegPredict
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for DVU2980

DVU2980 is enriched for 9 functions in 3 categories.
Enrichment Table (9)
Function System
Phosphatidylserine synthase cog/ cog
CDP-diacylglycerol-serine O-phosphatidyltransferase activity go/ molecular_function
phosphatidylcholine biosynthetic process go/ biological_process
phospholipid biosynthetic process go/ biological_process
membrane go/ cellular_component
Glycine serine and threonine metabolism kegg/ kegg pathway
Glycerophospholipid metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
pssA tigr/ tigrfam
Module neighborhood information for DVU2980

DVU2980 has total of 54 gene neighbors in modules 145, 308
Gene neighbors (54)
Gene Common Name Description Module membership
DVU0041 Slt family transglycosylase 145, 146
DVU0092 sensory box histidine kinase 145, 348
DVU0275 polysaccharide deacetylase family protein 71, 308
DVU0356 tag DNA-3-methyladenine glycosylase I 255, 308
DVU0448 gmd GDP-mannose 4,6-dehydratase 308, 341
DVU0876 metallo-beta-lactamase family protein 145, 172
DVU0952 hypothetical protein DVU0952 52, 145
DVU1057 cobalt ABC transporter permease 145, 309
DVU1058 cbiM cobalt transport protein CbiM 6, 145
DVU1174 hypothetical protein DVU1174 27, 308
DVU1175 hypothetical protein DVU1175 143, 308
DVU1194 hypothetical protein DVU1194 169, 308
DVU1200 ribE riboflavin synthase subunit alpha 169, 308
DVU1209 rpmF 50S ribosomal protein L32 169, 308
DVU1211 rpmB 50S ribosomal protein L28 169, 308
DVU1335 clpP ATP-dependent Clp protease proteolytic subunit 16, 308
DVU1405 hypothetical protein DVU1405 229, 308
DVU1460 hypothetical protein DVU1460 145, 334
DVU1742 prevent-host-death family protein 221, 308
DVU1861 prfB peptide chain release factor 2, programmed frameshift 16, 308
DVU1923 hupD hydrogenase expression/formation protein HupD 229, 308
DVU1937 phosphonate ABC transporter periplasmic phosphonate-binding protein 145, 262
DVU2066 phage integrase family site specific recombinase 219, 308
DVU2083 relA GTP pyrophosphokinase 145, 318
DVU2104 iron-sulfur cluster-binding/ATPase 53, 308
DVU2201 iron-containing alcohol dehydrogenase 16, 308
DVU2216 infA translation initiation factor IF-1 235, 308
DVU2235 hypothetical protein DVU2235 215, 308
DVU2236 hypothetical protein DVU2236 245, 308
DVU2285 L-lactate permease family protein 145, 306
DVU2286 hydrogenase subunit CooM 145, 207
DVU2287 hydrogenase subunit CooK 145, 346
DVU2289 hydrogenase subunit CooX 145, 207
DVU2291 carbon monoxide-induced hydrogenase CooH 145, 207
DVU2328 hydrogenase nickel insertion protein HypA 145, 249
DVU2417 SlyX protein 268, 308
DVU2580 response regulator 145, 251
DVU2607 hypothetical protein DVU2607 88, 308
DVU2619 hypothetical protein DVU2619 145, 162
DVU2944 ErfK/YbiS/YcfS/YnhG family protein 55, 145
DVU2945 hypothetical protein DVU2945 145, 278
DVU2980 pssA CDP-diacylglycerol--serine O-phosphatidyltransferase 145, 308
DVU3005 aminotransferase 22, 145
DVU3061 sensory box histidine kinase 55, 308
DVU3117 hypothetical protein DVU3117 308, 332
DVU3146 hypothetical protein DVU3146 219, 308
DVU3157 hypothetical protein DVU3157 145, 250
DVU3158 vacJ lipoprotein 26, 145
DVU3177 hypothetical protein DVU3177 145, 169
DVU3190 hypothetical protein DVU3190 145, 176
DVU3191 rluC ribosomal large subunit pseudouridine synthase C 52, 308
DVU3221 sensor histidine kinase 115, 145
DVU3273 hypothetical protein DVU3273 145, 186
DVUA0138 sensor histidine kinase 145, 185
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for DVU2980
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend