Organism : Geobacter sulfurreducens | Module List :
GSU1301 cheW-5

purine-binding chemotaxis protein CheW (NCBI)

CircVis
Functional Annotations (7)
Function System
Chemotaxis signal transduction protein cog/ cog
signal transducer activity go/ molecular_function
intracellular go/ cellular_component
chemotaxis go/ biological_process
signal transduction go/ biological_process
Two-component system kegg/ kegg pathway
Bacterial chemotaxis kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU1301
(Mouseover regulator name to see its description)

GSU1301 is regulated by 18 influences and regulates 0 modules.
Regulators for GSU1301 cheW-5 (18)
Regulator Module Operator
GSU0682 299 tf
GSU1410 299 tf
GSU1626 299 tf
GSU2362 299 tf
GSU2753 299 tf
GSU3387 299 tf
GSU0013 212 tf
GSU0581 212 tf
GSU1013 212 tf
GSU1522 212 tf
GSU1525 212 tf
GSU1626 212 tf
GSU1687 212 tf
GSU1934 212 tf
GSU2185 212 tf
GSU2520 212 tf
GSU2523 212 tf
GSU3363 212 tf

Warning: GSU1301 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2584 1.60e+04 ATAAAAAGACCGTA
Loader icon
2585 1.70e+04 GggcTTaTcTTGTct
Loader icon
2756 2.90e+03 AaTCaAtGtAtTA
Loader icon
2757 8.50e+03 AAAATgGtaTG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU1301

GSU1301 is enriched for 7 functions in 3 categories.
Enrichment Table (7)
Function System
Chemotaxis signal transduction protein cog/ cog
signal transducer activity go/ molecular_function
intracellular go/ cellular_component
chemotaxis go/ biological_process
signal transduction go/ biological_process
Two-component system kegg/ kegg pathway
Bacterial chemotaxis kegg/ kegg pathway
Module neighborhood information for GSU1301

GSU1301 has total of 36 gene neighbors in modules 212, 299
Gene neighbors (36)
Gene Common Name Description Module membership
GSU0002 recF recF protein (NCBI) 212, 301
GSU0100 GSU0100 hypothetical protein (VIMSS) 88, 299
GSU0513 GSU0513 dephospho-CoA kinase (VIMSS) 212, 219
GSU0520 GSU0520 conserved hypothetical protein (VIMSS) 40, 212
GSU0641 GSU0641 hypothetical protein (VIMSS) 13, 299
GSU0682 GSU0682 DNA-binding response regulator, LuxR family (VIMSS) 275, 299
GSU0789 GSU0789 response regulator (VIMSS) 187, 299
GSU0879 cheV chemotaxis protein CheV (NCBI) 8, 212
GSU0984 GSU0984 hypothetical protein (VIMSS) 13, 299
GSU1111 GSU1111 conserved hypothetical protein TIGR00048 (VIMSS) 139, 212
GSU1116 GSU1116 conserved domain protein (VIMSS) 212, 267
GSU1153 GSU1153 outer membrane protein, OMP85 family (NCBI) 275, 299
GSU1195 GSU1195 HD domain protein (VIMSS) 199, 212
GSU1208 GSU1208 membrane protein, putative (NCBI) 67, 212
GSU1273 carA carbamoyl-phosphate synthase, small subunit (NCBI) 39, 212
GSU1301 cheW-5 purine-binding chemotaxis protein CheW (NCBI) 212, 299
GSU1338 GSU1338 heavy-metal-associated domain protein (VIMSS) 13, 299
GSU1358 GSU1358 conserved hypothetical protein (VIMSS) 199, 212
GSU1361 GSU1361 Piwi domain protein (NCBI) 212, 299
GSU1421 GSU1421 nuclease SbcCD, D subunit, putative (NCBI) 212, 219
GSU1422 GSU1422 nuclease SbcCD, C subunit, putative (NCBI) 212, 219
GSU1508 GSU1508 conserved hypothetical protein (VIMSS) 124, 299
GSU1776 GSU1776 pilin domain protein (VIMSS) 245, 299
GSU1898 GSU1898 membrane protein, putative (VIMSS) 29, 212
GSU1901 GSU1901 hypothetical protein (VIMSS) 29, 212
GSU1935 birA birA biofunctional protein, putative (NCBI) 98, 212
GSU2367 GSU2367 organic solvent tolerance protein, putative (NCBI) 98, 212
GSU2457 GSU2457 conserved hypothetical protein (NCBI) 13, 299
GSU2507 GSU2507 sensor histidine kinase (NCBI) 299, 341
GSU2517 GSU2517 rhodanese-like domain/cysteine-rich domain protein (NCBI) 43, 212
GSU2520 GSU2520 (R)-2-hydroxyglutaryl-CoA dehydratase activator (VIMSS) 83, 212
GSU2810 GSU2810 hypothetical protein (VIMSS) 13, 299
GSU3204 GSU3204 conserved hypothetical protein (VIMSS) 212, 299
GSU3438 GSU3438 conserved hypothetical protein (VIMSS) 187, 299
GSU3439 GSU3439 NADH dehydrogenase I, G subunit (VIMSS) 167, 299
GSU3445 nuoA-2 NADH dehydrogenase I, A subunit (NCBI) 119, 299
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU1301
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend