Organism : Geobacter sulfurreducens | Module List:
Module 296 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 296

There are 6 regulatory influences for Module 296

Regulator Table (6)
Regulator Name Type
GSU2787 tf
GSU1320 tf
GSU2809 tf
GSU1639 tf
GSU3053 tf
GSU2915 tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
2750 3.10e+00 TAaaATCcTTaAcAAaC
Loader icon
2751 9.60e-01 GgCaTCCcttcTgCGgcGgaC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 296 is enriched for following functions.

KEGG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini Hochberg pvalue Genes with function Method
Amino Acid Metabolism kegg subcategory 2.01e-02 4.25e-02 3/26
Glycine serine and threonine metabolism kegg pathway 1.00e-05 2.85e-04 3/26
Metabolism of Cofactors and Vitamins kegg subcategory 5.90e-03 1.88e-02 3/26

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Transcription cog subcategory 1.38e-02 2.42e-02 3/26
Amino acid transport and metabolism cog subcategory 1.05e-02 1.90e-02 4/26
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 296

There are 26 genes in Module 296

Gene Member Table (26)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
GSU0291 cheR CDS None chromosome 320502 321560 - CheR methyltransferase, SAM binding domain protein, putative (NCBI) False
GSU0375 gcvT CDS None chromosome 409470 410558 + glycine cleavage system T protein (NCBI) False
GSU0376 gcvH-1 CDS None chromosome 410614 410988 + glycine cleavage system H protein (NCBI) False
GSU0377 GSU0377 CDS None chromosome 410988 412334 + glycine cleavage system P protein, subunit 1 (VIMSS) False
GSU0378 GSU0378 CDS None chromosome 412325 413770 + glycine cleavage system P protein, subunit 2 (VIMSS) False
GSU0379 GSU0379 CDS None chromosome 413770 414579 + biotin/lipoate A/B protein ligase family protein (NCBI) False
GSU0380 lipA CDS None chromosome 414576 415487 + lipoic acid synthetase (NCBI) False
GSU0381 GSU0381 CDS None chromosome 415484 415708 + lipoprotein, putative (VIMSS) False
GSU0382 GSU0382 CDS None chromosome 415717 416121 + conserved hypothetical protein (VIMSS) False
GSU0698 GSU0698 CDS None chromosome 737960 740221 + PBS lyase HEAT-like repeat protein (NCBI) False
GSU0920 GSU0920 CDS None chromosome 985467 985715 + hypothetical protein (NCBI) False
GSU0951 GSU0951 CDS None chromosome 1023807 1024397 - transcriptional regulator, TetR family (VIMSS) True
GSU1315 merA-1 CDS None chromosome 1440620 1442137 - mercuric reductase (NCBI) False
GSU1326 recG CDS None chromosome 1450443 1452587 + ATP-dependent DNA helicase RecG (NCBI) False
GSU2336 otsB CDS None chromosome 2554568 2555320 - trehalose-phosphatase (NCBI) False
GSU2466 GSU2466 CDS None chromosome 2703480 2705324 + hypothetical protein (VIMSS) False
GSU2573 GSU2573 CDS None chromosome 2834710 2835063 - hypothetical protein (VIMSS) False
GSU2577 GSU2577 CDS None chromosome 2839604 2839903 - hypothetical protein (VIMSS) False
GSU2673 GSU2673 CDS None chromosome 2947883 2949223 + hypothetical protein (VIMSS) False
GSU2676 GSU2676 CDS None chromosome 2955391 2956290 - membrane protein, putative (VIMSS) False
GSU2780 GSU2780 CDS None chromosome 3058694 3059200 - hypothetical protein (VIMSS) False
GSU2781 GSU2781 CDS None chromosome 3059292 3060410 + efflux transporter, RND family, MFP subunit (NCBI) False
GSU2782 GSU2782 CDS None chromosome 3060587 3063697 + AcrB/AcrD/AcrF family protein (VIMSS) False
GSU2783 GSU2783 CDS None chromosome 3063713 3064288 + HDIG domain protein (VIMSS) False
GSU2973 GSU2973 CDS None chromosome 3265018 3265431 - lipoprotein, putative (VIMSS) False
GSU3053 fliA CDS None chromosome 3354638 3355390 - RNA polymerase sigma factor for flagellar operon (NCBI) True

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.