Organism : Halobacterium salinarum NRC-1 | Module List :
VNG2591C

hypothetical protein VNG2591C

CircVis
Functional Annotations (2)
Function System
Predicted membrane protein cog/ cog
TIGR00341 tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for VNG2591C
(Mouseover regulator name to see its description)

VNG2591C is regulated by 6 influences and regulates 0 modules.
Regulators for VNG2591C (6)
Regulator Module Operator
VNG1510C 190 tf
VNG1548C 190 tf
VNG1617H 190 tf
VNG2112C 190 tf
VNG5068G
VNG0462C
190 combiner
VNG5068G
VNG0835G
190 combiner

Warning: VNG2591C Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
1335 1.50e-02 cCGaCgaCCacgaCg
Loader icon
1336 7.50e+04 CGGTgttatcg.ctTcg.Ggt
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for VNG2591C

VNG2591C is enriched for 2 functions in 3 categories.
Enrichment Table (2)
Function System
Predicted membrane protein cog/ cog
TIGR00341 tigr/ tigrfam
Module neighborhood information for VNG2591C

VNG2591C has total of 30 gene neighbors in modules 190
Gene neighbors (30)
Gene Common Name Description Module membership
VNG0011C hypothetical protein VNG0011C 190
VNG0164G hef hydrogenase expression/formation 190, 265
VNG0184H hypothetical protein VNG0184H 190, 270
VNG0186G pepB1 aminopeptidase-like protein 190, 265
VNG0214C hypothetical protein VNG0214C 190, 269
VNG0230C hypothetical protein VNG0230C 186, 190
VNG0351C hypothetical protein VNG0351C 190, 268
VNG0386Gm trpG2 anthranilate synthase subunit beta 190, 285
VNG0514C chromosome segregation protein 190, 196
VNG0555C hypothetical protein VNG0555C 190, 282
VNG0608C hypothetical protein VNG0608C 190
VNG0611H hypothetical protein VNG0611H 190
VNG0738H hypothetical protein VNG0738H 190, 284
VNG1036H hypothetical protein VNG1036H 190
VNG1069C hypothetical protein VNG1069C 190, 206, 299
VNG1352G gatB1 glutamyl-tRNA(Gln) amidotransferase subunit E 190, 285
VNG1481G sat serine acetyltransferase 190, 274
VNG1497C hypothetical protein VNG1497C 190
VNG1578H hypothetical protein VNG1578H 190
VNG1616C hypothetical protein VNG1616C 190
VNG1749G gbp1 translation-associated GTPase 190
VNG1849H hypothetical protein VNG1849H 190
VNG1920H hypothetical protein VNG1920H 190
VNG2065G dgs dolichol-P-glucose transferase 190, 287
VNG2124C hypothetical protein VNG2124C 190, 271
VNG2166Cm hypothetical protein VNG2166Cm 190
VNG2182H hypothetical protein VNG2182H 190
VNG2553G yqeC 6-phosphogluconate dehydrogenase-like protein 190
VNG2587C GTP-binding protein 190
VNG2591C hypothetical protein VNG2591C 190
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for VNG2591C
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend