Organism : Halobacterium salinarum NRC-1 | Module List:
Module 269 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 269

There are 2 regulatory influences for Module 269

Regulator Table (2)
Regulator Name Type
VNG6389G tf
VNG6143H tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
1471 3.40e+03 tTtttATA.TACT.Aatt
Loader icon
1472 1.90e+04 TaTtTaTTaATCTAT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 269 is enriched for following functions.

KEGG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini Hochberg pvalue Genes with function Method
Amino Acid Metabolism kegg subcategory 1.76e-02 4.46e-02 5/30
Amino Acid Metabolism kegg subcategory 1.52e-02 3.37e-02 4/30

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Amino acid transport and metabolism cog subcategory 2.96e-02 4.41e-02 4/30
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 269

There are 30 genes in Module 269

Gene Member Table (30)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
VNG0033H CDS 1446979 chromosome 29476 29913 - hypothetical protein VNG0033H False
VNG0061C CDS 1447004 chromosome 58827 60182 + hypothetical protein VNG0061C False
VNG0105H CDS 1447036 chromosome 86734 87219 - hypothetical protein VNG0105H False
VNG0214C CDS 1447130 chromosome 179707 180366 - hypothetical protein VNG0214C False
VNG0280H CDS 1447176 chromosome 223518 224468 - hypothetical protein VNG0280H False
VNG0298H CDS 1447189 chromosome 235698 236303 - hypothetical protein VNG0298H False
VNG0319H CDS 1447204 chromosome 251021 251263 + hypothetical protein VNG0319H False
VNG0329G caaX CDS 1447212 chromosome 258965 260251 - zinc metalloproteinase-like protein False
VNG0346H CDS 1447223 chromosome 274440 274601 - hypothetical protein VNG0346H False
VNG0367H CDS 1447236 chromosome 288101 288445 + hypothetical protein VNG0367H False
VNG0384G trpE2 CDS 1447247 chromosome 297545 299011 + anthranilate synthase subunit alpha False
VNG0387G ilvE1 CDS 1447248 chromosome 299568 300425 + branched-chain amino acid aminotransferase False
VNG0389C CDS 1447250 chromosome 300938 301228 - hypothetical protein VNG0389C True
VNG0415G purB CDS 1447270 chromosome 323468 324955 + adenylosuccinate lyase False
VNG0442G rspA CDS 1447292 chromosome 341670 342908 - hypothetical protein VNG0442G False
VNG0446G gcd CDS 1447295 chromosome 345205 346275 + glucose dehydrogenase False
VNG0812G htr18 CDS 1447577 chromosome 609588 611960 + Htr18 False
VNG0822C CDS 1447586 chromosome 621237 622844 - hypothetical protein VNG0822C False
VNG0852C CDS 1447608 chromosome 645426 646076 + hypothetical protein VNG0852C True
VNG0861H CDS 1447614 chromosome 651537 651836 + hypothetical protein VNG0861H False
VNG0915G hakA CDS 1447651 chromosome 692869 694062 + atrazine chlorohydrolase False
VNG1353C CDS 1447985 chromosome 1009330 1010874 - hypothetical protein VNG1353C False
VNG1786H CDS 1448309 chromosome 1323053 1323331 - hypothetical protein VNG1786H True
VNG2101H CDS 1448550 chromosome 1544296 1544730 + hypothetical protein VNG2101H False
VNG2376H CDS 1448772 chromosome 1781166 1781561 + hypothetical protein VNG2376H False
VNG2498H CDS 1448862 chromosome 1866003 1866383 + hypothetical protein VNG2498H False
VNG6254C CDS 1449150 pNRC200 196969 197274 - hypothetical protein VNG6254C False
VNG7078 CDS 1446859 pNRC100 79070 79339 - hypothetical protein VNG7078 False
VNG7082 CDS 1446863 pNRC100 85382 85735 - hypothetical protein VNG7082 False
VNG7137 CDS 1446911 pNRC100 152205 152669 - hypothetical protein VNG7137 False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.