Organism : Methanococcus maripaludis S2 | Module List :
MMP0493 cobN

cobaltochelatase subunit CobN

CircVis
Functional Annotations (5)
Function System
Cobalamin biosynthesis protein CobN and related Mg-chelatases cog/ cog
biosynthetic process go/ biological_process
cobaltochelatase activity go/ molecular_function
Porphyrin and chlorophyll metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for MMP0493
(Mouseover regulator name to see its description)

MMP0493 is regulated by 12 influences and regulates 0 modules.
Regulators for MMP0493 cobN (12)
Regulator Module Operator
MMP0052
MMP1137
44 combiner
MMP0209
Formate
44 combiner
MMP0791
MMP1137
44 combiner
MMP0907 44 tf
MMP1100
MMP1210
44 combiner
MMP0036
MMP0217
41 combiner
MMP0036
MMP1023
41 combiner
MMP0217
MMP1303
41 combiner
MMP0480 41 tf
MMP1100 41 tf
MMP1303
H2
41 combiner
MMP1376 41 tf

Warning: MMP0493 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
743 1.60e+02 gctgCTGaAAc
Loader icon
744 1.00e+02 TAttgtggA.aaaataGGG
Loader icon
749 7.20e-03 TTTGGgGg
Loader icon
750 1.80e+01 cCtgAaaag.TgtAA.tTcCa
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for MMP0493

MMP0493 is enriched for 5 functions in 3 categories.
Enrichment Table (5)
Function System
Cobalamin biosynthesis protein CobN and related Mg-chelatases cog/ cog
biosynthetic process go/ biological_process
cobaltochelatase activity go/ molecular_function
Porphyrin and chlorophyll metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Module neighborhood information for MMP0493

MMP0493 has total of 54 gene neighbors in modules 41, 44
Gene neighbors (54)
Gene Common Name Description Module membership
MMP0026 DP2 DNA polymerase II large subunit 25, 41, 92
MMP0057 cofH FO synthase subunit 2 9, 44
MMP0108 ABC-type Iron(III)-binding periplasmic protein precursor 41, 67, 95
MMP0138 fdhA formate dehydrogenase subunit alpha 9, 44
MMP0141 hypothetical protein MMP0141 41, 51
MMP0142 thiamine pyrophosphate dependent protein 17, 41, 51
MMP0144 hpcE 5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase 17, 41
MMP0146 hypothetical protein MMP0146 17, 41, 137
MMP0192 hypothetical protein MMP0192 44, 48
MMP0216 cation transport ATPase 4, 41, 95
MMP0275 periplasmic copper-binding protein 44, 48
MMP0343 hypothetical protein MMP0343 44, 62
MMP0466 hypothetical protein MMP0466 44, 48
MMP0467 hypothetical protein MMP0467 44, 48
MMP0468 hypothetical protein MMP0468 44, 48
MMP0469 hypothetical protein MMP0469 44, 48
MMP0470 MCE family-like protein 44, 48
MMP0471 hypothetical protein MMP0471 44, 48
MMP0472 integrase/recombinase 44, 48
MMP0490 hypothetical protein MMP0490 5, 44
MMP0491 MotA/TolQ/ExbB proton channel 5, 44
MMP0492 hypothetical protein MMP0492 5, 44
MMP0493 cobN cobaltochelatase subunit CobN 41, 44
MMP0502 hypothetical protein MMP0502 44, 48
MMP0610 tgtA 7-cyano-7-deazaguanine tRNA-ribosyltransferase 25, 41
MMP0670 hypothetical protein MMP0670 41, 51
MMP0680 upp uracil phosphoribosyltransferase 44, 48
MMP0735 N-6 adenine-specific DNA methylase:N6 adenine-specific DNA methyltransferase, D12 class 44, 90
MMP0851 hypothetical protein MMP0851 44, 48
MMP0861 kamA lysine 2,3-aminomutase 41, 95
MMP0862 yodP GCN5-like N-acetyltransferase 41, 95
MMP0866 proX glycine betaine ABC transporter substrate-binding protein 41, 89
MMP0867 binding-protein dependent transport system inner membrane protein 41, 89
MMP0868 proV ABC transporter ATPase 41, 66
MMP1150 mtaA uroporphyrinogen decarboxylase 4, 41, 95
MMP1193 hypothetical protein MMP1193 44, 48
MMP1194 triple helix repeat-containing collagen 44, 48
MMP1200 lysA diaminopimelate decarboxylase 21, 41
MMP1334 solute-binding protein/glutamate receptor 41, 129
MMP1441 mobB putative molybdopterin-guanine dinucleotide biosynthesis protein MobB/FeS domain-containing protein 41, 89
MMP1481 cbiM cobalt transport protein CbiM 44, 48
MMP1482 cobalt transport protein CbiN 44, 48
MMP1483 cbiQ cobalt ABC transporter inner membrane protein 44, 48
MMP1585 arginase 41, 112
MMP1602 hypothetical protein MMP1602 44, 48
MMP1612 hypothetical protein MMP1612 41, 95
MMP1651 modA molybdenum ABC transporter periplasmic molybdate-binding protein 41, 95
MMP1700 SSS sodium solute transporter superfamily 39, 41
Unanno_15 None 8, 44
Unanno_22 None 44, 62
Unanno_28 None 41, 95
Unanno_29 None 44, 48
Unanno_31 None 44, 48
Unanno_48 None 44, 101
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for MMP0493
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend