Organism : Methanococcus maripaludis S2 | Module List :
MMP1390

hypothetical protein MMP1390

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for MMP1390
(Mouseover regulator name to see its description)

MMP1390 is regulated by 9 influences and regulates 0 modules.
Regulators for MMP1390 (9)
Regulator Module Operator
MMP0033
MMP1304
46 combiner
MMP0086
H2
46 combiner
MMP0460
H2
46 combiner
MMP0465
MMP0637
46 combiner
MMP0568
MMP1304
46 combiner
MMP0607
MMP1304
46 combiner
MMP1023
MMP1303
46 combiner
MMP1304
H2
46 combiner
MMP1304
MMP1704
46 combiner

Warning: MMP1390 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
753 8.00e+02 AtCACC
Loader icon
754 1.10e+03 Tcagg.aGGatgGtG
Loader icon
855 3.10e+03 CGcaGtTTcCcCTACcGaTAC
Loader icon
856 4.90e+03 cgTTatctTTttGaTAgGGgCg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for MMP1390

Warning: No Functional annotations were found!

Module neighborhood information for MMP1390

MMP1390 has total of 58 gene neighbors in modules 46, 99
Gene neighbors (58)
Gene Common Name Description Module membership
MMP0001 hypothetical protein MMP0001 46, 106, 121, 144
MMP0002 L-seryl-tRNA selenium transferase 12, 46, 76, 106, 121
MMP0064 glnK1 nitrogen regulatory protein P-II 71, 99
MMP0065 amtB ammonium transporter 71, 99
MMP0066 glnB nitrogen regulatory protein P-II 71, 99
MMP0067 glnK2 nitrogen regulatory protein P-II 71, 99
MMP0068 amtB ammonium transporter 71, 99
MMP0176 cell division protein CDC48 1, 46
MMP0204 hypothetical protein MMP0204 67, 99
MMP0205 modA molybdenum ABC transporter periplasmic molybdenum-binding protein 71, 99
MMP0234 hypothetical protein MMP0234 46, 160
MMP0251 psmA proteasome subunit alpha 46, 68
MMP0252 hypothetical protein MMP0252 15, 46
MMP0363 methanol dehydrogenase regulatory protein-like protein 15, 46
MMP0373 hypothetical protein MMP0373 46, 50
MMP0374 hypothetical protein MMP0374 15, 46
MMP0387 microsomal signal peptidase 21 KD subunit 46, 50
MMP0394 hemD uroporphyrinogen III synthase 15, 46
MMP0395 hypothetical protein MMP0395 15, 46
MMP0411 comD sulfopyruvate decarboxylase subunit alpha 15, 46
MMP0427 rfc replication factor C small subunit 12, 46
MMP0456 xerD-like Phage integrase 73, 99
MMP0480 hypothetical protein MMP0480 58, 99
MMP0514 modA molybdenum ABC transporter periplasmic molybdate-binding protein 99, 146
MMP0516 modD quinolinate phosphoribosyl transferase 46, 68
MMP0656 hypothetical protein MMP0656 46, 160
MMP0658 MoaA/nifB/pqqE family protein 46, 90
MMP0729 uvrA excinuclease ABC subunit A 46, 90
MMP0853 nifH nitrogenase reductase 71, 99
MMP0854 NifI1 nitrogen regulatory protein P-II 71, 99
MMP0855 nifI2 nitrogen regulatory protein P-II 71, 99
MMP0856 nifD nitrogenase subunit alpha 71, 99
MMP0857 nifK nitrogenase 71, 99
MMP0858 nifE nitrogenase MoFe cofactor biosynthesis protein NifE 71, 99
MMP0859 nifN nitrogenase 71, 99
MMP0860 nifX nitrogen fixation-like protein 71, 99
MMP0939 HAD superfamily (subfamily IA) hydrolase 46, 151
MMP1033 hypothetical protein MMP1033 68, 99
MMP1049 multiple resistance and pH regulation protein F 12, 99
MMP1091 ADP-glucose pyrophosphorylase 99, 106
MMP1140 fdxA ferredoxin 1, 46
MMP1168 ABC transporter ATP-binding protein 15, 46
MMP1169 SufBD protein 15, 46
MMP1185 hydrogen uptake protein:hydrogenase maturation protease HycI 1, 46
MMP1197 binding-protein dependent transport system inner membrane protein 12, 46
MMP1206 glnA glutamine synthetase 99, 137
MMP1217 hypothetical protein MMP1217 12, 46
MMP1218 hypothetical protein MMP1218 12, 46, 49
MMP1221 SAM-binding motif-containing protein 46, 83
MMP1388 redox-active disulfide protein 2 99, 151
MMP1390 hypothetical protein MMP1390 46, 99
MMP1442 transcription regulator ArsR 71, 99
MMP1477 cbiA cobyrinic acid a,c-diamide synthase 46, 152
MMP1576 hypothetical protein MMP1576 12, 99
Unanno_36 None 46, 121
Unanno_47 None 58, 99
Unanno_6 None 71, 99
Unanno_7 None 23, 46
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for MMP1390
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend