Organism : Methanococcus maripaludis S2 | Module List :
MMP1709 rpl44e

50S ribosomal protein L44e

CircVis
Functional Annotations (5)
Function System
Ribosomal protein L44E cog/ cog
structural constituent of ribosome go/ molecular_function
ribosome go/ cellular_component
translation go/ biological_process
Ribosome kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for MMP1709
(Mouseover regulator name to see its description)

MMP1709 is regulated by 13 influences and regulates 0 modules.
Regulators for MMP1709 rpl44e (13)
Regulator Module Operator
MMP0041 11 tf
MMP0052 11 tf
MMP0097 11 tf
MMP0097
MMP0631
11 combiner
MMP0568 11 tf
MMP0036 20 tf
MMP0041 20 tf
MMP0052
MMP0097
20 combiner
MMP0052
MMP0257
20 combiner
MMP0052
MMP0480
20 combiner
MMP0097
MMP0631
20 combiner
MMP0097
MMP1052
20 combiner
MMP1137
MMP1646
20 combiner

Warning: MMP1709 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
683 1.90e+02 ctCaCC
Loader icon
684 3.70e+02 gtCCCA
Loader icon
701 1.70e+01 ggtGATTT
Loader icon
702 1.00e+04 CCCAAGTc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for MMP1709

MMP1709 is enriched for 5 functions in 3 categories.
Enrichment Table (5)
Function System
Ribosomal protein L44E cog/ cog
structural constituent of ribosome go/ molecular_function
ribosome go/ cellular_component
translation go/ biological_process
Ribosome kegg/ kegg pathway
Module neighborhood information for MMP1709

MMP1709 has total of 37 gene neighbors in modules 11, 20
Gene neighbors (37)
Gene Common Name Description Module membership
MMP0044 beta-lactamase domain-containing protein 11, 20
MMP0045 idsA bifunctional short chain isoprenyl diphosphate synthase 20, 61
MMP0046 hypothetical protein MMP0046 20, 51, 140
MMP0093 50S ribosomal protein L21e 8, 11, 20
MMP0094 putative pseudouridylate synthase 8, 11
MMP0150 hypothetical protein MMP0150 11, 138
MMP0151 rpl40e 50S ribosomal protein L40e 11, 138
MMP0159 rpl39e 50S ribosomal protein L39e 11, 18, 105
MMP0258 rpl12p 50S ribosomal protein L12P 11, 103
MMP0259 rplP0 acidic ribosomal protein P0 11, 18, 56
MMP0572 slyD FKBP-type peptidylprolyl isomerase 11, 96
MMP0574 hypothetical protein MMP0574 11, 138
MMP0575 gatC aspartyl/glutamyl-tRNA amidotransferase subunit C 11, 138
MMP0576 dapA dihydrodipicolinate synthase 11, 18, 138
MMP0577 rps17E 30S ribosomal protein S17e 11, 18, 138
MMP0578 aroQ chorismate mutase 11, 18, 96, 138
MMP0596 C/D box methylation guide ribonucleoprotein complex aNOP56 subunit 20, 81
MMP0625 50S ribosomal protein L14e 11, 18, 105
MMP0901 ATP/GTP-binding motif-containing protein 20, 51
MMP0971 purB adenylosuccinate lyase 8, 11
MMP1131 peptide chain release factor 1 20, 81
MMP1208 aIF2_gamma translation initiation factor IF-2 subunit gamma 20, 61, 96
MMP1318 lysS lysyl-tRNA synthetase 20, 21
MMP1443 ATP/GTP-binding motif-containing protein 20, 61, 92
MMP1444 methionine aminopeptidase 20, 51, 61, 92
MMP1445 guaA GMP synthase subunit A 20, 61
MMP1472 hypothetical protein MMP1472 11, 61
MMP1473 hypothetical protein MMP1473 11, 20
MMP1474 ileS isoleucyl-tRNA synthetase 16, 20
MMP1509 hypothetical protein MMP1509 11, 20
MMP1584 spermidine synthase 11, 21
MMP1705 creatininase 8, 11, 20
MMP1706 H/ACA RNA-protein complex component Nop10p 20, 21
MMP1707 aIF2_alpha translation initiation factor IF-2 subunit alpha 20, 21
MMP1708 rps27e 30S ribosomal protein S27e 11, 20
MMP1709 rpl44e 50S ribosomal protein L44e 11, 20
MMP1710 hypothetical protein MMP1710 20, 87, 92
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for MMP1709
Please add your comments for this gene by using the form below. Your comments will be publicly available.

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend