Organism : Pseudomonas aeruginosa | Module List :
PA1348

hypothetical protein (NCBI)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA1348
(Mouseover regulator name to see its description)

PA1348 is regulated by 33 influences and regulates 0 modules.
Regulators for PA1348 (33)
Regulator Module Operator
PA0179 405 tf
PA0191 405 tf
PA0791 405 tf
PA0942 405 tf
PA1269 405 tf
PA2047 405 tf
PA2622 405 tf
PA2718 405 tf
PA3363 405 tf
PA4853 405 tf
PA4890 405 tf
PA5253 405 tf
PA5261 405 tf
PA5437 405 tf
PA0179 159 tf
PA0652 159 tf
PA1351 159 tf
PA1603 159 tf
PA2332 159 tf
PA2849 159 tf
PA2897 159 tf
PA3266 159 tf
PA3583 159 tf
PA3815 159 tf
PA4270 159 tf
PA4296 159 tf
PA4703 159 tf
PA5059 159 tf
PA5105 159 tf
PA5274 159 tf
PA5301 159 tf
PA5344 159 tf
PA5374 159 tf

Warning: PA1348 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3146 1.30e-08 aTgtcggaaAaa.gctggaaAa.a
Loader icon
3147 3.50e+00 GGAtTaataC..TTtc.gtgacG
Loader icon
3634 1.50e-01 agCcggCCggcAaaacgcC.aAg
Loader icon
3635 1.70e+02 tGTCGcaacCagaACtCctgcaGG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA1348

Warning: No Functional annotations were found!

Module neighborhood information for PA1348

PA1348 has total of 38 gene neighbors in modules 159, 405
Gene neighbors (38)
Gene Common Name Description Module membership
PA1121 PA1121 hypothetical protein (NCBI) 159, 388
PA1135 PA1135 chaperone protein HchA (NCBI) 233, 405
PA1202 PA1202 probable hydrolase (NCBI) 258, 405
PA1289 PA1289 hypothetical protein (NCBI) 153, 159
PA1348 PA1348 hypothetical protein (NCBI) 159, 405
PA1730 PA1730 hypothetical protein (NCBI) 84, 405
PA1731 PA1731 hypothetical protein (NCBI) 84, 405
PA1733 PA1733 hypothetical protein (NCBI) 64, 405
PA1753 PA1753 hypothetical protein (NCBI) 209, 405
PA1833 PA1833 probable oxidoreductase (NCBI) 88, 405
PA2564 PA2564 hypothetical protein (NCBI) 124, 159
PA2565 PA2565 hypothetical protein (NCBI) 124, 159
PA2566 PA2566 hypothetical protein (NCBI) 124, 159
PA2746 PA2746 hypothetical protein (NCBI) 159, 209
PA2841 PA2841 probable enoyl-CoA hydratase/isomerase (NCBI) 159, 163
PA3256 PA3256 probable oxidoreductase (NCBI) 405, 457
PA3347 PA3347 hypothetical protein (NCBI) 159, 209
PA3455 PA3455 hypothetical protein (NCBI) 7, 405
PA3734 PA3734 hypothetical protein (NCBI) 159, 472
PA3740 PA3740 hypothetical protein (NCBI) 159, 248
PA3957 PA3957 short chain dehydrogenase (NCBI) 159, 187
PA4294 PA4294 hypothetical protein (NCBI) 54, 159
PA4295 PA4295 hypothetical protein (NCBI) 159, 321
PA4532 PA4532 hypothetical protein (NCBI) 51, 405
PA4533 PA4533 hypothetical protein (NCBI) 51, 405
PA4534 PA4534 hypothetical protein (NCBI) 51, 405
PA4536 PA4536 hypothetical protein (NCBI) 51, 405
PA4538 ndh NADH dehydrogenase (NCBI) 51, 405
PA4641 PA4641 None 159, 382
PA4703 PA4703 hypothetical protein (NCBI) 159, 209
PA4781 PA4781 probable two-component response regulator (NCBI) 128, 159
PA4929 PA4929 hypothetical protein (NCBI) 159, 292
PA5191 PA5191 hypothetical protein (NCBI) 159, 551
PA5271 PA5271 hypothetical protein (NCBI) 203, 405
PA5408 PA5408 hypothetical protein (NCBI) 185, 405
PA5409 PA5409 hypothetical protein (NCBI) 405, 461
PA5474 PA5474 probable metalloprotease (NCBI) 321, 405
PA5546 PA5546 hypothetical protein (NCBI) 258, 405
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA1348
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend