Organism : Pseudomonas aeruginosa | Module List :
PA2061

probable ATP-binding component of ABC transporter (NCBI)

CircVis
Functional Annotations (5)
Function System
ABC-type uncharacterized transport system, duplicated ATPase component cog/ cog
ATP binding go/ molecular_function
peptide transport go/ biological_process
ATPase activity go/ molecular_function
ABC transporters kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA2061
(Mouseover regulator name to see its description)

PA2061 is regulated by 37 influences and regulates 0 modules.
Regulators for PA2061 (37)
Regulator Module Operator
PA0163 408 tf
PA0191 408 tf
PA0393 408 tf
PA0701 408 tf
PA1261 408 tf
PA1980 408 tf
PA3133 408 tf
PA3381 408 tf
PA3420 408 tf
PA3711 408 tf
PA3771 408 tf
PA3776 408 tf
PA4169 408 tf
PA5032 408 tf
PA5293 408 tf
PA5431 408 tf
PA0191 12 tf
PA0701 12 tf
PA0748 12 tf
PA1067 12 tf
PA1261 12 tf
PA1347 12 tf
PA1949 12 tf
PA2050 12 tf
PA2354 12 tf
PA2547 12 tf
PA2838 12 tf
PA3133 12 tf
PA3249 12 tf
PA3771 12 tf
PA3776 12 tf
PA4074 12 tf
PA4341 12 tf
PA5032 12 tf
PA5344 12 tf
PA5431 12 tf
PA5562 12 tf

Warning: PA2061 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2860 1.30e+02 GAAAaCG.A
Loader icon
2861 4.10e+02 A.CgccGcAAc
Loader icon
3640 3.10e-03 cCggcgCccg.CCacCCaccGc.g
Loader icon
3641 4.80e+02 CCGGtgTCcGgcCttggcAGGGgC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA2061

PA2061 is enriched for 5 functions in 3 categories.
Enrichment Table (5)
Function System
ABC-type uncharacterized transport system, duplicated ATPase component cog/ cog
ATP binding go/ molecular_function
peptide transport go/ biological_process
ATPase activity go/ molecular_function
ABC transporters kegg/ kegg pathway
Module neighborhood information for PA2061

PA2061 has total of 41 gene neighbors in modules 12, 408
Gene neighbors (41)
Gene Common Name Description Module membership
PA0166 PA0166 probable transporter (NCBI) 12, 434
PA0274 PA0274 hypothetical protein (NCBI) 330, 408
PA0474 PA0474 hypothetical protein (NCBI) 12, 50
PA0539 PA0539 hypothetical protein (NCBI) 12, 498
PA0557 PA0557 hypothetical protein (NCBI) 24, 408
PA0702 PA0702 hypothetical protein (NCBI) 23, 408
PA0845 PA0845 hypothetical protein (NCBI) 310, 408
PA1254 PA1254 probable dihydrodipicolinate synthetase (NCBI) 24, 408
PA1258 PA1258 probable permease of ABC transporter (NCBI) 50, 408
PA1259 PA1259 hypothetical protein (NCBI) 24, 408
PA1261 PA1261 probable transcriptional regulator (NCBI) 20, 408
PA1262 PA1262 probable major facilitator superfamily (MFS) transporter (NCBI) 267, 408
PA1284 PA1284 probable acyl-CoA dehydrogenase (NCBI) 408, 489
PA1285 PA1285 probable transcriptional regulator (NCBI) 229, 408
PA1286 PA1286 probable major facilitator superfamily (MFS) transporter (NCBI) 71, 408
PA1316 PA1316 probable major facilitator superfamily (MFS) transporter (NCBI) 408, 438
PA1783 nasA nitrate transporter (NCBI) 12, 177
PA1848 PA1848 probable major facilitator superfamily (MFS) transporter (NCBI) 408, 434
PA1849 PA1849 hypothetical protein (NCBI) 335, 408
PA1953 PA1953 hypothetical protein (NCBI) 12, 386
PA1962 acpD acyl carrier protein phosphodiesterase (NCBI) 323, 408
PA1972 PA1972 hypothetical protein (NCBI) 12, 172
PA2057 PA2057 hypothetical protein (NCBI) 12, 50
PA2060 PA2060 probable permease of ABC transporter (NCBI) 12, 50
PA2061 PA2061 probable ATP-binding component of ABC transporter (NCBI) 12, 408
PA2124 PA2124 probable dehydrogenase (NCBI) 12, 36
PA2669 PA2669 hypothetical protein (NCBI) 71, 408
PA2670 PA2670 hypothetical protein (NCBI) 71, 408
PA2911 PA2911 probable TonB-dependent receptor (NCBI) 83, 408
PA2912 PA2912 probable ATP-binding component of ABC transporter (NCBI) 83, 408
PA2914 PA2914 probable permease of ABC transporter (NCBI) 83, 408
PA2922 PA2922 probable hydrolase (NCBI) 408, 481
PA3036 PA3036 hypothetical protein (NCBI) 12, 310
PA3359 PA3359 hypothetical protein (NCBI) 12, 434
PA3360 PA3360 probable secretion protein (NCBI) 12, 401
PA3595 PA3595 probable major facilitator superfamily (MFS) transporter (NCBI) 408, 425
PA3775 PA3775 hypothetical protein (NCBI) 12, 50
PA3960 PA3960 hypothetical protein (NCBI) 175, 408
PA4084 cupB3 usher CupB3 (NCBI) 12, 36
PA4343 PA4343 probable major facilitator superfamily (MFS) transporter (NCBI) 12, 172
PA5294 PA5294 multidrug efflux protein NorA (NCBI) 12, 310
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA2061
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend