Organism : Pseudomonas aeruginosa | Module List :
PA2282

hypothetical protein (NCBI)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA2282
(Mouseover regulator name to see its description)

PA2282 is regulated by 38 influences and regulates 0 modules.
Regulators for PA2282 (38)
Regulator Module Operator
PA0207 461 tf
PA0547 461 tf
PA0942 461 tf
PA1351 461 tf
PA1399 461 tf
PA1484 461 tf
PA1603 461 tf
PA1850 461 tf
PA1859 461 tf
PA2376 461 tf
PA2696 461 tf
PA2713 461 tf
PA3565 461 tf
PA3815 461 tf
PA4703 461 tf
PA4745 461 tf
PA5344 461 tf
PA0034 289 tf
PA0218 289 tf
PA0707 289 tf
PA0765 289 tf
PA0828 289 tf
PA0873 289 tf
PA1351 289 tf
PA1374 289 tf
PA1826 289 tf
PA1850 289 tf
PA2032 289 tf
PA2118 289 tf
PA2488 289 tf
PA2489 289 tf
PA2510 289 tf
PA2696 289 tf
PA2838 289 tf
PA3594 289 tf
PA3714 289 tf
PA3778 289 tf
PA5562 289 tf

Warning: PA2282 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3406 6.00e-02 AaaagcAacacAtctaataAt
Loader icon
3407 4.40e+03 ttTTTCCtct
Loader icon
3738 1.00e+01 gc.atca..aAaaagaccgTCa
Loader icon
3739 5.30e+02 ttCGcggC.gtgAT.ATcGAc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA2282

Warning: No Functional annotations were found!

Module neighborhood information for PA2282

PA2282 has total of 46 gene neighbors in modules 289, 461
Gene neighbors (46)
Gene Common Name Description Module membership
PA0029 PA0029 probable sulfate transporter (NCBI) 201, 461
PA0031 betC choline sulfatase (NCBI) 340, 461
PA0033 PA0033 hypothetical protein (NCBI) 289, 343
PA0192 PA0192 probable TonB-dependent receptor (NCBI) 235, 289
PA0249 PA0249 probable acetyltransferase (NCBI) 53, 461
PA0828 PA0828 probable transcriptional regulator (NCBI) 283, 289
PA0894 PA0894 hypothetical protein (NCBI) 30, 461
PA1188 PA1188 hypothetical protein (NCBI) 345, 461
PA1448 fliR flagellar biosynthesis protein (NCBI) 296, 461
PA1449 flhB flagellar biosynthesis protein (NCBI) 461, 537
PA1649 PA1649 short chain dehydrogenase (NCBI) 84, 461
PA1851 PA1851 hypothetical protein (NCBI) 79, 461
PA2048 PA2048 hypothetical protein (NCBI) 136, 461
PA2074 PA2074 hypothetical protein (NCBI) 289, 516
PA2128 cupA1 fimbrial subunit CupA1 (NCBI) 9, 461
PA2200 PA2200 hypothetical protein (NCBI) 109, 289
PA2216 PA2216 hypothetical protein (NCBI) 289, 439
PA2241 pslK hypothetical protein (NCBI) 289, 522
PA2256 pvcC pyoverdine biosynthesis protein PvcC (NCBI) 199, 289
PA2282 PA2282 hypothetical protein (NCBI) 289, 461
PA2347 PA2347 hypothetical protein (NCBI) 289, 446
PA2349 PA2349 hypothetical protein (NCBI) 289, 307
PA2422 PA2422 hypothetical protein (NCBI) 34, 289
PA2428 PA2428 hypothetical protein (NCBI) 289, 302
PA2498 PA2498 hypothetical protein (NCBI) 289, 290
PA2576 PA2576 hypothetical protein (NCBI) 359, 461
PA2578 PA2578 probable acetyltransferase (NCBI) 359, 461
PA2580 PA2580 hypothetical protein (NCBI) 53, 461
PA2691 PA2691 hypothetical protein (NCBI) 289, 475
PA2696 PA2696 probable transcriptional regulator (NCBI) 373, 461
PA2722 PA2722 hypothetical protein (NCBI) 84, 461
PA2819 PA2819 hypothetical protein (NCBI) 401, 461
PA2869 PA2869 hypothetical protein (NCBI) 190, 461
PA2870 PA2870 hypothetical protein (NCBI) 190, 461
PA2918 PA2918 probable short-chain dehydrogenase (NCBI) 289, 333
PA2923 hisJ periplasmic histidine-binding protein HisJ (NCBI) 211, 289
PA2958 PA2958 hypothetical protein (NCBI) 136, 461
PA3406 hasD transport protein HasD (NCBI) 132, 289
PA3565 PA3565 probable transcriptional regulator (NCBI) 190, 461
PA4040 PA4040 hypothetical protein (NCBI) 97, 289
PA4181 PA4181 hypothetical protein (NCBI) 109, 289
PA4353 PA4353 hypothetical protein (NCBI) 108, 461
PA4521 PA4521 hypothetical protein (NCBI) 53, 461
PA4522 ampD beta-lactamase expression regulator AmpD (NCBI) 283, 461
PA5310 PA5310 hypothetical protein (NCBI) 295, 461
PA5409 PA5409 hypothetical protein (NCBI) 405, 461
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA2282
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend