Organism : Pseudomonas aeruginosa | Module List :
PA2958

hypothetical protein (NCBI)

CircVis
Functional Annotations (4)
Function System
Selenocysteine lyase cog/ cog
metabolic process go/ biological_process
transaminase activity go/ molecular_function
pyridoxal phosphate binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA2958
(Mouseover regulator name to see its description)

PA2958 is regulated by 34 influences and regulates 0 modules.
Regulators for PA2958 (34)
Regulator Module Operator
PA0207 461 tf
PA0547 461 tf
PA0942 461 tf
PA1351 461 tf
PA1399 461 tf
PA1484 461 tf
PA1603 461 tf
PA1850 461 tf
PA1859 461 tf
PA2376 461 tf
PA2696 461 tf
PA2713 461 tf
PA3565 461 tf
PA3815 461 tf
PA4703 461 tf
PA4745 461 tf
PA5344 461 tf
PA0791 136 tf
PA1290 136 tf
PA1945 136 tf
PA2016 136 tf
PA2076 136 tf
PA2093 136 tf
PA2281 136 tf
PA3094 136 tf
PA3420 136 tf
PA3565 136 tf
PA4269 136 tf
PA4703 136 tf
PA4745 136 tf
PA4769 136 tf
PA5189 136 tf
PA5344 136 tf
PA5389 136 tf

Warning: PA2958 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3102 3.30e-05 TTtgtcTcGTgATagccGgAat
Loader icon
3103 2.60e-05 GCAgAAcAAGa
Loader icon
3738 1.00e+01 gc.atca..aAaaagaccgTCa
Loader icon
3739 5.30e+02 ttCGcggC.gtgAT.ATcGAc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA2958

PA2958 is enriched for 4 functions in 3 categories.
Enrichment Table (4)
Function System
Selenocysteine lyase cog/ cog
metabolic process go/ biological_process
transaminase activity go/ molecular_function
pyridoxal phosphate binding go/ molecular_function
Module neighborhood information for PA2958

PA2958 has total of 46 gene neighbors in modules 136, 461
Gene neighbors (46)
Gene Common Name Description Module membership
PA0029 PA0029 probable sulfate transporter (NCBI) 201, 461
PA0031 betC choline sulfatase (NCBI) 340, 461
PA0249 PA0249 probable acetyltransferase (NCBI) 53, 461
PA0256 PA0256 hypothetical protein (NCBI) 136, 450
PA0348 PA0348 hypothetical protein (NCBI) 136, 471
PA0585 PA0585 hypothetical protein (NCBI) 74, 136
PA0791 PA0791 probable transcriptional regulator (NCBI) 136, 432
PA0894 PA0894 hypothetical protein (NCBI) 30, 461
PA1028 PA1028 probable oxidoreductase (NCBI) 136, 516
PA1188 PA1188 hypothetical protein (NCBI) 345, 461
PA1448 fliR flagellar biosynthesis protein (NCBI) 296, 461
PA1449 flhB flagellar biosynthesis protein (NCBI) 461, 537
PA1649 PA1649 short chain dehydrogenase (NCBI) 84, 461
PA1851 PA1851 hypothetical protein (NCBI) 79, 461
PA1945 PA1945 probable transcriptional regulator (NCBI) 68, 136
PA2048 PA2048 hypothetical protein (NCBI) 136, 461
PA2128 cupA1 fimbrial subunit CupA1 (NCBI) 9, 461
PA2282 PA2282 hypothetical protein (NCBI) 289, 461
PA2576 PA2576 hypothetical protein (NCBI) 359, 461
PA2578 PA2578 probable acetyltransferase (NCBI) 359, 461
PA2580 PA2580 hypothetical protein (NCBI) 53, 461
PA2696 PA2696 probable transcriptional regulator (NCBI) 373, 461
PA2722 PA2722 hypothetical protein (NCBI) 84, 461
PA2814 PA2814 hypothetical protein (NCBI) 136, 469
PA2819 PA2819 hypothetical protein (NCBI) 401, 461
PA2869 PA2869 hypothetical protein (NCBI) 190, 461
PA2870 PA2870 hypothetical protein (NCBI) 190, 461
PA2958 PA2958 hypothetical protein (NCBI) 136, 461
PA3216 PA3216 hypothetical protein (NCBI) 136, 294
PA3342 PA3342 hypothetical protein (NCBI) 136, 292
PA3565 PA3565 probable transcriptional regulator (NCBI) 190, 461
PA4353 PA4353 hypothetical protein (NCBI) 108, 461
PA4521 PA4521 hypothetical protein (NCBI) 53, 461
PA4522 ampD beta-lactamase expression regulator AmpD (NCBI) 283, 461
PA4680 PA4680 hypothetical protein (NCBI) 136, 292
PA4681 PA4681 hypothetical protein (NCBI) 136, 292
PA4682 PA4682 hypothetical protein (NCBI) 136, 292
PA5185 PA5185 hypothetical protein (NCBI) 136, 397
PA5186 PA5186 probable iron-containing alcohol dehydrogenase (NCBI) 136, 397
PA5187 PA5187 probable acyl-CoA dehydrogenase (NCBI) 136, 397
PA5188 PA5188 probable 3-hydroxyacyl-CoA dehydrogenase (NCBI) 136, 397
PA5189 PA5189 probable transcriptional regulator (NCBI) 136, 397
PA5310 PA5310 hypothetical protein (NCBI) 295, 461
PA5389 PA5389 probable transcriptional regulator (NCBI) 136, 294
PA5409 PA5409 hypothetical protein (NCBI) 405, 461
PA5520 PA5520 hypothetical protein (NCBI) 136, 432
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA2958
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend