Organism : Pseudomonas aeruginosa | Module List :
PA3901 fecA

Fe(III) dicitrate transport protein FecA (NCBI)

CircVis
Functional Annotations (8)
Function System
Outer membrane receptor for Fe3+-dicitrate cog/ cog
receptor activity go/ molecular_function
iron ion binding go/ molecular_function
nutrient import go/ biological_process
siderophore transmembrane transporter activity go/ molecular_function
siderophore transport go/ biological_process
outer membrane go/ cellular_component
TonB-siderophor tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA3901
(Mouseover regulator name to see its description)

PA3901 is regulated by 21 influences and regulates 0 modules.
Regulators for PA3901 fecA (21)
Regulator Module Operator
PA0436 33 tf
PA0675 33 tf
PA0748 33 tf
PA0873 33 tf
PA2005 33 tf
PA2050 33 tf
PA2056 33 tf
PA2276 33 tf
PA2337 33 tf
PA2432 33 tf
PA3381 33 tf
PA3776 33 tf
PA3830 33 tf
PA3927 33 tf
PA4070 33 tf
PA4169 33 tf
PA4596 33 tf
PA4989 33 tf
PA0839 26 tf
PA1630 26 tf
PA2281 26 tf

Warning: PA3901 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2888 4.50e+01 gATTG.cgg.cGAAg
Loader icon
2889 6.90e+03 AgGacctCcAg
Loader icon
2898 2.20e+04 tTggcgGaaatT.cCgGCcG
Loader icon
2899 4.30e+04 ctcc..Cag.ccAtccagGac
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA3901

PA3901 is enriched for 8 functions in 3 categories.
Enrichment Table (8)
Function System
Outer membrane receptor for Fe3+-dicitrate cog/ cog
receptor activity go/ molecular_function
iron ion binding go/ molecular_function
nutrient import go/ biological_process
siderophore transmembrane transporter activity go/ molecular_function
siderophore transport go/ biological_process
outer membrane go/ cellular_component
TonB-siderophor tigr/ tigrfam
Module neighborhood information for PA3901

PA3901 has total of 43 gene neighbors in modules 26, 33
Gene neighbors (43)
Gene Common Name Description Module membership
PA0391 PA0391 hypothetical protein (NCBI) 26, 168
PA0748 PA0748 still frameshift probable transcriptional regulator (NCBI) 33, 340
PA0811 PA0811 probable major facilitator superfamily (MFS) transporter (NCBI) 33, 483
PA0839 PA0839 probable transcriptional regulator (NCBI) 26, 550
PA0873 phhR transcriptional regulator PhhR (NCBI) 33, 338
PA0918 PA0918 cytochrome b561 (NCBI) 26, 189
PA0957 PA0957 hypothetical protein (NCBI) 33, 171
PA0982 PA0982 hypothetical protein (NCBI) 26, 168
PA0986 PA0986 hypothetical protein (NCBI) 26, 323
PA1127 PA1127 probable oxidoreductase (NCBI) 26, 320
PA1140 PA1140 hypothetical protein (NCBI) 26, 187
PA1256 PA1256 probable ATP-binding component of ABC transporter (NCBI) 24, 33
PA1325 PA1325 hypothetical protein (NCBI) 33, 245
PA1671 stk1 serine-threonine kinase Stk1 (NCBI) 33, 497
PA1797 PA1797 hypothetical protein (NCBI) 26, 434
PA1825 PA1825 hypothetical protein (NCBI) 33, 175
PA2026 PA2026 hypothetical protein (NCBI) 26, 550
PA2056 PA2056 probable transcriptional regulator (NCBI) 24, 33
PA2119 PA2119 alcohol dehydrogenase (Zn-dependent) (NCBI) 26, 226
PA2201 PA2201 hypothetical protein (NCBI) 33, 315
PA2254 pvcA pyoverdine biosynthesis protein PvcA (NCBI) 33, 199
PA2255 pvcB pyoverdine biosynthesis protein PvcB (NCBI) 33, 199
PA2419 PA2419 probable hydrolase (NCBI) 33, 199
PA2440 PA2440 hypothetical protein (NCBI) 33, 34
PA2441 PA2441 hypothetical protein (NCBI) 33, 206
PA2532 tpx thiol peroxidase (NCBI) 26, 70
PA2539 PA2539 hypothetical protein (NCBI) 26, 487
PA2567 PA2567 hypothetical protein (NCBI) 26, 268
PA2697 PA2697 hypothetical protein (NCBI) 33, 148
PA2724 PA2724 hypothetical protein (NCBI) 33, 226
PA3051 PA3051 hypothetical protein (NCBI) 26, 171
PA3368 PA3368 probable acetyltransferase (NCBI) 33, 302
PA3457 PA3457 hypothetical protein (NCBI) 30, 33
PA3619 PA3619 hypothetical protein (NCBI) 33, 498
PA3830 PA3830 probable transcriptional regulator (NCBI) 33, 175
PA3901 fecA Fe(III) dicitrate transport protein FecA (NCBI) 26, 33
PA3927 PA3927 probable transcriptional regulator (NCBI) 33, 175
PA3961 PA3961 probable ATP-dependent helicase (NCBI) 26, 306
PA4518 PA4518 hypothetical protein (NCBI) 26, 97
PA4685 PA4685 hypothetical protein (NCBI) 26, 291
PA4869 PA4869 hypothetical protein (NCBI) 26, 473
PA4973 thiC thiamine biosynthesis protein ThiC (NCBI) 26, 511
PA5291 PA5291 probable choline transporter (NCBI) 26, 82
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA3901
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend