Organism : Pseudomonas aeruginosa | Module List :
PA1797

hypothetical protein (NCBI)

CircVis
Functional Annotations (5)
Function System
Beta-lactamase class C and other penicillin binding proteins cog/ cog
copper ion binding go/ molecular_function
beta-lactamase activity go/ molecular_function
beta-lactam antibiotic catabolic process go/ biological_process
response to antibiotic go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA1797
(Mouseover regulator name to see its description)

PA1797 is regulated by 16 influences and regulates 0 modules.
Regulators for PA1797 (16)
Regulator Module Operator
PA0839 26 tf
PA1630 26 tf
PA2281 26 tf
PA0163 434 tf
PA0701 434 tf
PA1399 434 tf
PA1980 434 tf
PA2050 434 tf
PA2704 434 tf
PA2838 434 tf
PA3381 434 tf
PA3420 434 tf
PA4341 434 tf
PA5032 434 tf
PA5253 434 tf
PA5283 434 tf

Warning: PA1797 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2888 4.50e+01 gATTG.cgg.cGAAg
Loader icon
2889 6.90e+03 AgGacctCcAg
Loader icon
3688 7.40e-07 cGAacagCtgtTac.cgttc
Loader icon
3689 2.00e-03 GTCGcCcCCgcttCcCgCtGatTA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA1797

PA1797 is enriched for 5 functions in 3 categories.
Enrichment Table (5)
Function System
Beta-lactamase class C and other penicillin binding proteins cog/ cog
copper ion binding go/ molecular_function
beta-lactamase activity go/ molecular_function
beta-lactam antibiotic catabolic process go/ biological_process
response to antibiotic go/ biological_process
Module neighborhood information for PA1797

PA1797 has total of 48 gene neighbors in modules 26, 434
Gene neighbors (48)
Gene Common Name Description Module membership
PA0166 PA0166 probable transporter (NCBI) 12, 434
PA0391 PA0391 hypothetical protein (NCBI) 26, 168
PA0453 PA0453 hypothetical protein (NCBI) 434, 439
PA0710 gloA2 lactoylglutathione lyase (NCBI) 190, 434
PA0839 PA0839 probable transcriptional regulator (NCBI) 26, 550
PA0863 PA0863 probable oxidoreductase (NCBI) 206, 434
PA0918 PA0918 cytochrome b561 (NCBI) 26, 189
PA0982 PA0982 hypothetical protein (NCBI) 26, 168
PA0986 PA0986 hypothetical protein (NCBI) 26, 323
PA1127 PA1127 probable oxidoreductase (NCBI) 26, 320
PA1140 PA1140 hypothetical protein (NCBI) 26, 187
PA1797 PA1797 hypothetical protein (NCBI) 26, 434
PA1848 PA1848 probable major facilitator superfamily (MFS) transporter (NCBI) 408, 434
PA1879 PA1879 hypothetical protein (NCBI) 206, 434
PA1975 PA1975 hypothetical protein (NCBI) 434, 459
PA1979 PA1979 probable two-component sensor (NCBI) 235, 434
PA1980 PA1980 probable two-component response regulator (NCBI) 428, 434
PA1981 PA1981 hypothetical protein (NCBI) 434, 459
PA1982 exaA quinoprotein alcohol dehydrogenase (NCBI) 434, 459
PA2026 PA2026 hypothetical protein (NCBI) 26, 550
PA2051 PA2051 probable transmembrane sensor (NCBI) 434, 545
PA2119 PA2119 alcohol dehydrogenase (Zn-dependent) (NCBI) 26, 226
PA2532 tpx thiol peroxidase (NCBI) 26, 70
PA2539 PA2539 hypothetical protein (NCBI) 26, 487
PA2567 PA2567 hypothetical protein (NCBI) 26, 268
PA2655 PA2655 hypothetical protein (NCBI) 197, 434
PA2789 PA2789 hypothetical protein (NCBI) 247, 434
PA2808 PA2808 hypothetical protein (NCBI) 407, 434
PA2809 PA2809 probable two-component response regulator (NCBI) 407, 434
PA2810 PA2810 probable two-component sensor (NCBI) 401, 434
PA3051 PA3051 hypothetical protein (NCBI) 26, 171
PA3059 pelF hypothetical protein (NCBI) 156, 434
PA3060 pelE hypothetical protein (NCBI) 311, 434
PA3061 pelD hypothetical protein (NCBI) 268, 434
PA3062 pelC hypothetical protein (NCBI) 156, 434
PA3136 PA3136 probable secretion protein (NCBI) 105, 434
PA3137 PA3137 probable major facilitator superfamily (MFS) transporter (NCBI) 434, 498
PA3359 PA3359 hypothetical protein (NCBI) 12, 434
PA3901 fecA Fe(III) dicitrate transport protein FecA (NCBI) 26, 33
PA3961 PA3961 probable ATP-dependent helicase (NCBI) 26, 306
PA4518 PA4518 hypothetical protein (NCBI) 26, 97
PA4685 PA4685 hypothetical protein (NCBI) 26, 291
PA4869 PA4869 hypothetical protein (NCBI) 26, 473
PA4886 PA4886 probable two-component sensor (NCBI) 418, 434
PA4973 thiC thiamine biosynthesis protein ThiC (NCBI) 26, 511
PA5282 PA5282 probable major facilitator superfamily (MFS) transporter (NCBI) 330, 434
PA5283 PA5283 probable transcriptional regulator (NCBI) 241, 434
PA5291 PA5291 probable choline transporter (NCBI) 26, 82
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA1797
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend