Organism : Rhodobacter sphaeroides 2.4.1 | Module List :
RSP_0433

hypothetical protein (NCBI)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for RSP_0433
(Mouseover regulator name to see its description)

RSP_0433 is regulated by 23 influences and regulates 0 modules.
Regulators for RSP_0433 (23)
Regulator Module Operator
RSP_0087 255 tf
RSP_0443 255 tf
RSP_0489 255 tf
RSP_1092 255 tf
RSP_1606 255 tf
RSP_1712 255 tf
RSP_1990 255 tf
RSP_2200 255 tf
RSP_2324 255 tf
RSP_2362 255 tf
RSP_2800 255 tf
RSP_0185 123 tf
RSP_0443 123 tf
RSP_0489 123 tf
RSP_0927 123 tf
RSP_0999 123 tf
RSP_1055 123 tf
RSP_1866 123 tf
RSP_1871 123 tf
RSP_1890 123 tf
RSP_2200 123 tf
RSP_2324 123 tf
RSP_3238 123 tf

Warning: RSP_0433 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7966 1.00e+03 ATcgcGAaaTC
Loader icon
7967 1.90e+03 AAaaAtCacCtCa
Loader icon
8228 2.10e+03 tcTccATGgggaaaT
Loader icon
8229 8.40e+03 AGAaaAAGGTA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for RSP_0433

Warning: No Functional annotations were found!

Module neighborhood information for RSP_0433

RSP_0433 has total of 22 gene neighbors in modules 123, 255
Gene neighbors (22)
Gene Common Name Description Module membership
RSP_0431 RSP_0431 putative selenocysteine lyase (NCBI) 123, 255
RSP_0432 RSP_0432 hypothetical protein (NCBI) 123, 255
RSP_0433 RSP_0433 hypothetical protein (NCBI) 123, 255
RSP_0434 RSP_0434 None 123, 255
RSP_0437 SufC Suf C, ATPase (NCBI) 123, 255
RSP_0439 RSP_0439 hypothetical protein (NCBI) 123, 255
RSP_1559 icd Isocitrate/isopropylmalate dehydrogenase (NCBI) 123, 255
RSP_2363 RSP_2363 Short-chain dehydrogenase/reductase (NCBI) 255, 325
RSP_2364 fucA L-fuculose phosphate aldolase (Class II) (NCBI) 255, 289
RSP_2365 RSP_2365 ABC sugar (ribose) transporter, periplasmic substrate-binding subunit (NCBI) 135, 255
RSP_2366 RSP_2366 ABC sugar (ribose) transporter, fused ATPase subunits (NCBI) 135, 255
RSP_2367 RSP_2367 ABC sugar (ribose) transporter, inner membrane subunit (NCBI) 135, 255
RSP_2368 RSP_2368 ABC sugar (ribose) transporter, inner membrane subunit (NCBI) 135, 255
RSP_2370 RSP_2370 putative sugar kinase (NCBI) 135, 255
RSP_6016 RSP_6016 hypothetical protein (NCBI) 78, 123
RSP_6093 flgJ FlgJ (NCBI) 123, 290
RSP_6125 RSP_6125 hypothetical protein (NCBI) 78, 123
RSP_6139 RSP_6139 hypothetical protein (NCBI) 255, 290
RSP_6146 RSP_6146 hypothetical protein (NCBI) 123, 255
RSP_6169 RSP_6169 hypothetical protein (NCBI) 123, 305
RSP_6222 RSP_6222 hypothetical protein (NCBI) 123, 255
RSP_6256 pucA LHII alpha, light-harvesting B800/850 protein (NCBI) 123, 205
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for RSP_0433
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend