Organism : Synechococcus elongatus PCC 7942 | Module List:
Module 109 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 109

There are 0 regulatory influences for Module 109

Warning: No Regulators were found!

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 3 motifs predicted.

Motif Table (3)
Motif Id e-value Consensus Motif Logo
1847 8.50e+00 Ag.GcCAGAAT
Loader icon
1848 6.10e+04 GAaaT.GcCAGtCaG
Loader icon
1849 6.30e+04 cCGCTcgg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 109 is enriched for following functions.

KEGG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini Hochberg pvalue Genes with function Method
Carbohydrate Metabolism kegg subcategory 7.19e-03 3.64e-02 4/17
Energy Metabolism kegg subcategory 1.14e-02 4.70e-02 4/17
Amino Acid Metabolism kegg subcategory 0.00e+00 0.00e+00 14/17
Metabolism kegg subcategory 0.00e+00 0.00e+00 22/17
Metabolism kegg category 0.00e+00 0.00e+00 28/17
Global kegg category 0.00e+00 0.00e+00 22/17
Metabolism kegg category 7.00e-06 2.61e-04 12/17
Carbohydrate Metabolism kegg subcategory 5.97e-03 2.03e-02 3/17
Amino sugar and nucleotide sugar metabolism kegg pathway 3.10e-05 9.14e-04 3/17
Energy Metabolism kegg subcategory 7.37e-03 2.29e-02 4/17
Amino Acid Metabolism kegg subcategory 7.30e-05 1.62e-03 5/17
Alanine aspartate and glutamate metabolism kegg pathway 4.00e-06 1.53e-04 3/17
Arginine and proline metabolism kegg pathway 1.50e-05 5.16e-04 3/17
Global kegg category 1.00e-06 6.90e-05 12/17
Metabolism kegg subcategory 1.00e-06 6.90e-05 12/17
Metabolic pathways kegg pathway 1.00e-06 4.80e-05 12/17
Biosynthesis of secondary metabolites kegg pathway 1.79e-04 2.76e-03 6/17
Microbial metabolism in diverse environments kegg pathway 4.37e-04 4.91e-03 4/17

TIGRFam Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Central intermediary metabolism tigr mainrole 6.00e-06 3.29e-04 3/17
Amino acid biosynthesis tigr mainrole 1.70e-04 4.62e-03 3/17
Central intermediary metabolism tigr mainrole 6.00e-06 1.70e-05 3/17
Amino acid biosynthesis tigr mainrole 1.70e-04 3.91e-04 3/17

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Cell wall/membrane/envelope biogenesis cog subcategory 5.10e-05 3.39e-03 5/17
Amino acid transport and metabolism cog subcategory 1.82e-03 3.60e-02 4/17
Metabolism cog category 7.83e-04 2.21e-02 11/17
Metabolism cog category 2.14e-03 3.97e-03 10/17
Cell wall/membrane/envelope biogenesis cog subcategory 5.10e-05 1.40e-04 5/17
Amino acid transport and metabolism cog subcategory 1.82e-03 3.42e-03 4/17
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 109

There are 17 genes in Module 109

Gene Member Table (17)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
Synpcc7942_0009 CDS 3774229 chromosome 8964 10166 + argininosuccinate synthase (EC 6.3.4.5) (IMGterm) False
Synpcc7942_0288 CDS 3773850 chromosome 282604 283962 - UDP-N-acetylglucosamine pyrophosphorylase (EC 2.7.7.23) / glucosamine-1-phosphate N-acetyltransferase (EC 2.3.1.157) (IMGterm) False
Synpcc7942_0484 CDS 3774722 chromosome 469432 470874 - hypothetical protein False
Synpcc7942_0534 CDS 3774772 chromosome 517016 518941 - glutamine--fructose-6-phosphate transaminase (IMGterm) False
Synpcc7942_0609 CDS 3775591 chromosome 596382 597872 + NADH dehydrogenase subunit M (EC 1.6.5.3) (IMGterm) False
Synpcc7942_0682 CDS 3775665 chromosome 675946 676905 + hypothetical protein False
Synpcc7942_0684 CDS 3775854 chromosome 678025 678774 + 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100) (IMGterm) False
Synpcc7942_0925 CDS 3774924 chromosome 931278 932579 - phosphoribosylamine--glycine ligase (EC 6.3.4.13) (IMGterm) False
Synpcc7942_0939 CDS 3775326 chromosome 944618 945244 + adenylylsulfate kinase (EC 2.7.1.25) (IMGterm) False
Synpcc7942_0972 CDS 3775360 chromosome 979369 979761 + YjgF-like protein False
Synpcc7942_1001 CDS 3773928 chromosome 1011886 1013736 - aspartate kinase (EC 2.7.2.4) (IMGterm) False
Synpcc7942_1087 CDS 3775037 chromosome 1103190 1104164 + hypothetical protein False
Synpcc7942_1359 CDS 3775552 chromosome 1398294 1399499 - coenzyme F420 hydrogenase (EC:1.12.98.1) False
Synpcc7942_1433 argC CDS 3773605 chromosome 1486983 1488041 + N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38) (IMGterm) False
Synpcc7942_1973 CDS 3774160 chromosome 2043151 2044320 - mannose-1-phosphate guanyltransferase (EC:2.7.7.13) False
Synpcc7942_2358 CDS 3774641 chromosome 2424522 2425352 + nitrilase-like False
Synpcc7942_2545 CDS 3775138 chromosome 2624982 2626160 + L-aspartate aminotransferase apoenzyme (EC 2.6.1.1) (IMGterm) False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.