Organism : Bacillus cereus ATCC14579 | Module List :
BC0041

Corrin/porphyrin methyltransferase (NCBI ptt file)

CircVis
Functional Annotations (4)
Function System
Predicted methyltransferases cog/ cog
metabolic process go/ biological_process
methyltransferase activity go/ molecular_function
TIGR00096 tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC0041
(Mouseover regulator name to see its description)

BC0041 is regulated by 27 influences and regulates 0 modules.
Regulators for BC0041 (27)
Regulator Module Operator
BC0099 139 tf
BC1302 139 tf
BC2386 139 tf
BC3084 139 tf
BC3792 139 tf
BC4010 139 tf
BC4652 139 tf
BC4703 139 tf
BC5481 139 tf
BC0116 388 tf
BC0607 388 tf
BC0657 388 tf
BC1296 388 tf
BC1841 388 tf
BC1889 388 tf
BC2410 388 tf
BC2672 388 tf
BC2770 388 tf
BC3400 388 tf
BC3706 388 tf
BC3814 388 tf
BC3826 388 tf
BC3891 388 tf
BC3982 388 tf
BC4057 388 tf
BC4289 388 tf
BC5332 388 tf

Warning: BC0041 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4194 1.60e-04 gAgGgGga
Loader icon
4195 1.30e+04 GGGTGGTAaCaCGG
Loader icon
4686 3.70e+00 AtaGGaggGGA
Loader icon
4687 8.80e+02 A.g.a.aAAA.agAAAaaggcAT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC0041

BC0041 is enriched for 4 functions in 3 categories.
Enrichment Table (4)
Function System
Predicted methyltransferases cog/ cog
metabolic process go/ biological_process
methyltransferase activity go/ molecular_function
TIGR00096 tigr/ tigrfam
Module neighborhood information for BC0041

BC0041 has total of 48 gene neighbors in modules 139, 388
Gene neighbors (48)
Gene Common Name Description Module membership
BC0041 BC0041 Corrin/porphyrin methyltransferase (NCBI ptt file) 139, 388
BC0374 BC0374 Amidohydrolase amhX (NCBI ptt file) 139, 218
BC0494 BC0494 hypothetical Cytosolic Protein (NCBI ptt file) 85, 139
BC0803 BC0803 Sodium-dependent phosphate transporter (NCBI ptt file) 257, 388
BC0820 BC0820 Branched-chain amino acid transport system carrier protein (NCBI ptt file) 139, 197
BC0859 BC0859 Oligopeptide-binding protein oppA (NCBI ptt file) 137, 139
BC1230 BC1230 Bacterial Ig-like domain protein (NCBI ptt file) 86, 139
BC1231 BC1231 Sodium/proline symporter (NCBI ptt file) 139, 399
BC1289 BC1289 Spermidine/putrescine-binding protein (NCBI ptt file) 388, 458
BC1441 BC1441 Branched-chain amino acid transport system carrier protein (NCBI ptt file) 139, 412
BC1817 BC1817 CAAX amino terminal protease family (NCBI ptt file) 86, 139
BC1841 BC1841 Transcriptional regulators, LysR family (NCBI ptt file) 75, 388
BC1985 BC1985 None 139, 311
BC2094 BC2094 Acetyltransferase (NCBI ptt file) 137, 139
BC2160 BC2160 hypothetical protein (NCBI ptt file) 139, 517
BC2391 BC2391 hypothetical protein (NCBI ptt file) 388, 432
BC2464 BC2464 S-layer protein / Peptidoglycan endo-beta-N-acetylglucosaminidase (NCBI ptt file) 139, 517
BC2471 BC2471 Penicillin-binding protein transpeptidase (NCBI ptt file) 388, 499
BC2496 BC2496 D-alanyl-D-alanine carboxypeptidase (NCBI ptt file) 9, 139
BC2505 BC2505 hypothetical protein (NCBI ptt file) 176, 388
BC2699 BC2699 None 139, 428
BC2715 BC2715 hypothetical Membrane Spanning Protein (NCBI ptt file) 139, 175
BC3075 BC3075 EpiH/GdmH-related protein (NCBI ptt file) 75, 139
BC3117 BC3117 Arsenical pump membrane protein (NCBI ptt file) 139, 341
BC3307 BC3307 D-alanyl-D-alanine carboxypeptidase (NCBI ptt file) 176, 388
BC3524 BC3524 S-layer protein / N-acetylmuramoyl-L-alanine amidase (NCBI ptt file) 67, 139
BC3644 BC3644 Sodium/proline symporter (NCBI ptt file) 161, 388
BC3665 BC3665 Bacitracin transport permease protein BCRB (NCBI ptt file) 100, 388
BC3666 BC3666 Bacitracin transport ATP-binding protein bcrA (NCBI ptt file) 176, 388
BC3709 BC3709 hypothetical Membrane Spanning Protein (NCBI ptt file) 304, 388
BC3788 BC3788 Nucleoside transport system permease protein (NCBI ptt file) 139, 234
BC3789 BC3789 None 139, 234
BC3893 lspA lipoprotein signal peptidase (RefSeq) 139, 192
BC3963 BC3963 Transglutaminase (NCBI ptt file) 145, 388
BC4010 BC4010 Transcriptional regulator, LacI family (NCBI ptt file) 139, 432
BC4121 BC4121 Tyrosine transporter (NCBI ptt file) 139, 412
BC4122 BC4122 None 139, 277
BC4135 BC4135 L-serine dehydratase (NCBI ptt file) 176, 388
BC4136 BC4136 L-serine dehydratase (NCBI ptt file) 176, 388
BC4137 BC4137 hypothetical protein (NCBI ptt file) 176, 388
BC4396 BC4396 Molybdopterin biosynthesis MoeB protein (NCBI ptt file) 346, 388
BC4449 BC4449 hypothetical Membrane Spanning Protein (NCBI ptt file) 139, 464
BC4852 BC4852 hypothetical protein (NCBI ptt file) 139, 415
BC5051 BC5051 Sodium/proton-dependent alanine carrier protein (NCBI ptt file) 139, 213
BC5062 BC5062 Tyrosyl-tRNA synthetase (NCBI ptt file) 139, 297
BC5302 BC5302 Sensory box/GGDEF family protein (NCBI ptt file) 139, 321
BC5350 BC5350 Transcriptional activator plcR (NCBI ptt file) 139, 506
BC5366 BC5366 Muramoyltetrapeptide carboxypeptidase (NCBI ptt file) 139, 218
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC0041
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend