Organism : Bacillus cereus ATCC14579 | Module List :
BC1389

Proton/sodium-glutamate symport protein (NCBI ptt file)

CircVis
Functional Annotations (4)
Function System
Na+/H+-dicarboxylate symporters cog/ cog
dicarboxylic acid transport go/ biological_process
membrane go/ cellular_component
sodium:dicarboxylate symporter activity go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC1389
(Mouseover regulator name to see its description)

BC1389 is regulated by 23 influences and regulates 0 modules.
Regulators for BC1389 (23)
Regulator Module Operator
BC0057 264 tf
BC1134 264 tf
BC1732 264 tf
BC1936 264 tf
BC2558 264 tf
BC3062 264 tf
BC3224 264 tf
BC3244 264 tf
BC3653 264 tf
BC4104 264 tf
BC4425 264 tf
BC4525 264 tf
BC4826 264 tf
BC5010 264 tf
BC0410 199 tf
BC1047 199 tf
BC2766 199 tf
BC3224 199 tf
BC3244 199 tf
BC3332 199 tf
BC3653 199 tf
BC4570 199 tf
BC4960 199 tf

Warning: BC1389 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4314 1.50e-08 atGaAAGCGtt
Loader icon
4315 7.80e-05 aAGGaGGagtt
Loader icon
4444 9.60e-05 aAaAGggG
Loader icon
4445 3.80e+04 cTAGGTGtGGC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC1389

BC1389 is enriched for 4 functions in 3 categories.
Enrichment Table (4)
Function System
Na+/H+-dicarboxylate symporters cog/ cog
dicarboxylic acid transport go/ biological_process
membrane go/ cellular_component
sodium:dicarboxylate symporter activity go/ molecular_function
Module neighborhood information for BC1389

BC1389 has total of 69 gene neighbors in modules 199, 264
Gene neighbors (69)
Gene Common Name Description Module membership
BC0185 BC0185 Arginase (NCBI ptt file) 216, 264
BC0238 BC0238 hypothetical protein (NCBI ptt file) 264, 473
BC0373 BC0373 Na+/H+ antiporter NnaC (NCBI ptt file) 197, 199
BC0520 BC0520 hypothetical protein (NCBI ptt file) 216, 264
BC0620 BC0620 Ubiquinone/menaquinone biosynthesis methyltransferase UBIE (NCBI ptt file) 199, 248
BC0643 BC0643 Arginine permease (NCBI ptt file) 199, 473
BC0800 BC0800 hypothetical protein (NCBI ptt file) 264, 381
BC0809 BC0809 PTS system, diacetylchitobiose-specific IIC component (NCBI ptt file) 199, 387
BC0900 BC0900 hypothetical protein (NCBI ptt file) 199, 225
BC0979 BC0979 Dihydroxyacetone kinase (NCBI ptt file) 72, 199
BC0981 BC0981 Dihydroxyacetone kinase (NCBI ptt file) 199, 220
BC1034 BC1034 Glycerol uptake facilitator protein (NCBI ptt file) 199, 516
BC1039 BC1039 hypothetical protein (NCBI ptt file) 264, 381
BC1047 BC1047 Protease production regulatory protein hpr (NCBI ptt file) 30, 199
BC1134 BC1134 Competence transcription factor (NCBI ptt file) 264, 381
BC1185 BC1185 Oligopeptide-binding protein oppA (NCBI ptt file) 199, 387
BC1266 BC1266 Integral membrane protein (NCBI ptt file) 264, 381
BC1333 BC1333 CBS domain containing protein (NCBI ptt file) 100, 199
BC1349 BC1349 Acetyltransferase (NCBI ptt file) 7, 264
BC1389 BC1389 Proton/sodium-glutamate symport protein (NCBI ptt file) 199, 264
BC1596 BC1596 Transporter, Drug/Metabolite Exporter family (NCBI ptt file) 199, 381
BC1625 BC1625 Chemotaxis motA protein (NCBI ptt file) 30, 199
BC1626 BC1626 Chemotaxis motB protein (NCBI ptt file) 30, 199
BC1782 BC1782 hypothetical protein (NCBI ptt file) 216, 264
BC1783 BC1783 Capsule biosynthesis protein capA (NCBI ptt file) 120, 264
BC1823 BC1823 Cytidine deaminase (NCBI ptt file) 199, 250
BC1962 BC1962 Phosphohydrolase (MutT/nudix family protein) (NCBI ptt file) 7, 264
BC2147 BC2147 Response regulator aspartate phosphatase (NCBI ptt file) 216, 264
BC2148 BC2148 Response regulator aspartate phosphatase inhibitor (NCBI ptt file) 216, 264
BC2329 BC2329 Zinc uptake transporter (NCBI ptt file) 199, 250
BC2617 BC2617 Cysteine dioxygenase (NCBI ptt file) 199, 327
BC2766 BC2766 Sigma-54-dependent transcriptional activator (NCBI ptt file) 199, 415
BC2851 BC2851 hypothetical protein (NCBI ptt file) 199, 516
BC2959 BC2959 Malate:quinone oxidoreductase (NCBI ptt file) 264, 284
BC2962 BC2962 Sugar transport system permease protein (NCBI ptt file) 199, 334
BC2965 BC2965 Sugar (pentulose and hexulose) kinases (NCBI ptt file) 186, 199
BC3113 BC3113 Two-component response regulator ycbB (NCBI ptt file) 30, 199
BC3180 BC3180 Low temperature requirement protein A (NCBI ptt file) 199, 410
BC3185 BC3185 hypothetical protein (NCBI ptt file) 197, 199
BC3189 BC3189 Serine transporter (NCBI ptt file) 199, 213
BC3224 BC3224 Transcriptional regulator, ArsR family (NCBI ptt file) 199, 264
BC3225 BC3225 Macrolide-efflux protein (NCBI ptt file) 199, 401
BC3264 BC3264 hypothetical protein (NCBI ptt file) 264, 299
BC3452 BC3452 hypothetical protein (NCBI ptt file) 199, 225
BC3495 BC3495 Glycerophosphoryl diester phosphodiesterase (NCBI ptt file) 199, 213
BC3631 BC3631 Medium-chain-fatty-acid--CoA ligase (NCBI ptt file) 199, 213
BC3921 BC3921 Acetyltransferase (NCBI ptt file) 264, 473
BC3938 BC3938 hypothetical Cytosolic Protein (NCBI ptt file) 120, 264
BC4007 BC4007 Sporulation kinase B (NCBI ptt file) 264, 316
BC4041 BC4041 hypothetical protein (NCBI ptt file) 155, 264
BC4063 BC4063 hydrolase (HAD superfamily) (NCBI ptt file) 120, 264
BC4195 BC4195 Ribosomal-protein-alanine acetyltransferase (NCBI ptt file) 264, 294
BC4241 BC4241 hypothetical protein (NCBI ptt file) 7, 199
BC4558 BC4558 hypothetical Membrane Spanning Protein (NCBI ptt file) 216, 264
BC4578 BC4578 hypothetical protein (NCBI ptt file) 216, 264
BC4591 BC4591 MaoC family protein (NCBI ptt file) 199, 334
BC4658 BC4658 Maltose O-acetyltransferase (NCBI ptt file) 264, 475
BC4676 BC4676 hypothetical Cytosolic Protein (NCBI ptt file) 216, 264
BC4677 BC4677 General stress protein (NCBI ptt file) 216, 264
BC4780 BC4780 ABC transporter permease protein (NCBI ptt file) 141, 199
BC4784 BC4784 hypothetical protein (NCBI ptt file) 199, 504
BC4923 BC4923 hypothetical protein (NCBI ptt file) 216, 264
BC4961 BC4961 hypothetical Cytosolic Protein (NCBI ptt file) 224, 264
BC5093 BC5093 Xanthine permease (NCBI ptt file) 264, 381
BC5217 BC5217 PTS system, lichenan oligosaccharide-specific IIB component (NCBI ptt file) 199, 339
BC5280 BC5280 (3R)-hydroxymyristoyl-[acyl carrier protein] dehydratase (NCBI ptt file) 74, 264
BC5320 BC5320 PTS system, glucose-specific IIA component (NCBI ptt file) 74, 199
BC5438 BC5438 Murein hydrolase export regulator (NCBI ptt file) 199, 434
BC5439 BC5439 Murein hydrolase exporter (NCBI ptt file) 197, 199
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC1389
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend