Organism : Bacillus subtilis | Module List :
BSU03090 ycgF

putative aminoacid export permease (RefSeq)

CircVis
Functional Annotations (3)
Function System
Putative threonine efflux protein cog/ cog
amino acid transport go/ biological_process
membrane go/ cellular_component
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU03090
(Mouseover regulator name to see its description)

BSU03090 is regulated by 11 influences and regulates 0 modules.
Regulators for BSU03090 ycgF (11)
Regulator Module Operator
BSU09520 402 tf
BSU14730 402 tf
BSU18460 402 tf
BSU27110 402 tf
BSU31070 402 tf
BSU31530 402 tf
BSU35840 402 tf
BSU05060 291 tf
BSU25100 291 tf
BSU33740 291 tf
BSU38310 291 tf

Warning: BSU03090 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5520 3.20e-10 gaAAAaa.AGAttatgAAcAaGA
Loader icon
5521 1.40e-04 ATGggCctCCTTTTTtaTgAggTA
Loader icon
5712 1.30e+02 gAAGGA
Loader icon
5713 3.30e+04 CTGGACGg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU03090

BSU03090 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
Putative threonine efflux protein cog/ cog
amino acid transport go/ biological_process
membrane go/ cellular_component
Module neighborhood information for BSU03090

BSU03090 has total of 44 gene neighbors in modules 291, 402
Gene neighbors (44)
Gene Common Name Description Module membership
BSU02030 ybdM putative protein kinase (RefSeq) 222, 291
BSU02970 yceK putative transcriptional regulator (ArsR family) (RefSeq) 378, 402
BSU03090 ycgF putative aminoacid export permease (RefSeq) 291, 402
BSU03100 ycgG hypothetical protein (RefSeq) 216, 291
BSU03360 yciC putative metallochaperone with NTPase activity (RefSeq) 163, 291
BSU05240 ydeL putative PLP-dependent transcriptional regulator (RefSeq) 115, 291
BSU12070 yjdJ hypothetical protein (RefSeq) 166, 291
BSU12140 yjgA hypothetical protein (RefSeq) 378, 402
BSU12890 ykcC putative glycosyltransferase (RefSeq) 130, 291
BSU13790 ykvQ putative sporulation-specific glycosylase (RefSeq) 44, 291
BSU14690 yktD hypothetical protein (RefSeq) 177, 402
BSU14730 ylaC RNA polymerase ECF-type sigma factor (RefSeq) 274, 402
BSU15390 sepF cell division machinery factor (RefSeq) 237, 402
BSU15420 divIVA cell-division initiation protein (RefSeq) 64, 402
BSU18460 gltC transcriptional regulator (LysR family) (RefSeq) 23, 402
BSU18920 phrK secreted regulator of the activity of phosphatase RapK (RefSeq) 239, 291
BSU19120 czrA transcriptional regulator (multiple metal-sensing ArsR-SmtB transcriptional repressors family) (RefSeq) 78, 291
BSU22950 ypdA putative FAD-dependent disulfide oxidoreductase (RefSeq) 82, 402
BSU22990 ypbF hypothetical protein (RefSeq) 377, 402
BSU23740 yqjU hypothetical protein (RefSeq) 36, 291
BSU23940 yqjB hypothetical protein (RefSeq) 291, 406
BSU25710 cwlH N-acetylmuramoyl-L-alanine amidase (RefSeq) 291, 406
BSU25720 yqeD hypothetical protein (RefSeq) 40, 291
BSU26160 yqbC conserved hypothetical protein; skin element (RefSeq) 145, 291
BSU30350 yttB putative efflux transporter (RefSeq) 51, 291
BSU30700 rpmE2 50S ribosomal protein L31 type B (RefSeq) 377, 402
BSU31120 lytG exoglucosaminidase (RefSeq) 197, 402
BSU31490 pbpD penicillin-binding protein 4 (RefSeq) 102, 402
BSU31500 yuxK hypothetical protein (RefSeq) 233, 402
BSU32020 yuiH putative sulfite oxidase (RefSeq) 96, 291
BSU32030 bioYB putative biotin transporter (RefSeq) 177, 291
BSU32070 yuiC hypothetical protein (RefSeq) 291, 307
BSU35660 mnaA UDP-N-acetylmannosamine 2-epimerase (RefSeq) 102, 402
BSU35690 ggaA poly(glucosyl N-acetylgalactosamine 1-phosphate) glucosyltransferase (RefSeq) 67, 402
BSU36340 ywpE putative sortase (RefSeq) 291, 318
BSU36790 ywmA hypothetical protein (RefSeq) 51, 291
BSU38310 ywbI putative transcriptional regulator (LysR family) (RefSeq) 291, 409
BSU38330 lrgB anti-holin factor controlling activity of murein hydrolases (RefSeq) 291, 409
BSU38410 sacX negative regulator of SacY (RefSeq) 98, 291
BSU39770 iolR transcriptional regulator (DeoR family) (RefSeq) 323, 402
BSU39830 yxcA hypothetical protein (RefSeq) 263, 291
BSU39850 yxbF putative transcriptional regulator (RefSeq) 213, 291
BSU40690 yybC putative integral inner membrane protein (RefSeq) 11, 402
BSU40980 yyaB putative integral inner membrane protein (RefSeq) 115, 291
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU03090
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend