Organism : Bacillus subtilis | Module List :
BSU11610 ppnK

inorganic polyphosphate/ATP-NAD kinase (RefSeq)

CircVis
Functional Annotations (5)
Function System
Predicted sugar kinase cog/ cog
NAD+ kinase activity go/ molecular_function
metabolic process go/ biological_process
Nicotinate and nicotinamide metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU11610
(Mouseover regulator name to see its description)

BSU11610 is regulated by 19 influences and regulates 0 modules.
Regulators for BSU11610 ppnK (19)
Regulator Module Operator
BSU02890 324 tf
BSU04680 324 tf
BSU06960 324 tf
BSU09520 324 tf
BSU15640 324 tf
BSU16810 324 tf
BSU25760 324 tf
BSU27320 324 tf
BSU31530 324 tf
BSU35650 324 tf
BSU00980 194 tf
BSU01430 194 tf
BSU04680 194 tf
BSU09830 194 tf
BSU15880 194 tf
BSU16900 194 tf
BSU25250 194 tf
BSU29030 194 tf
BSU40010 194 tf

Warning: BSU11610 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5334 2.00e+02 TCCgccCTttc
Loader icon
5335 1.90e+03 Ggc.GCtgcCc.gcC
Loader icon
5586 2.80e+00 AaaAgAAggAG
Loader icon
5587 2.00e+04 CGGCAGAG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU11610

BSU11610 is enriched for 5 functions in 3 categories.
Enrichment Table (5)
Function System
Predicted sugar kinase cog/ cog
NAD+ kinase activity go/ molecular_function
metabolic process go/ biological_process
Nicotinate and nicotinamide metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Module neighborhood information for BSU11610

BSU11610 has total of 49 gene neighbors in modules 194, 324
Gene neighbors (49)
Gene Common Name Description Module membership
BSU00590 yabO putative ribosomal RNA binding protein; heat shock protein (RefSeq) 193, 324
BSU00600 yabP spore protein involved in the shaping of the spore coat (RefSeq) 324, 377
BSU00610 yabQ membrane protein of the forespore (RefSeq) 324, 377
BSU00620 divIC cell-division initiation protein (RefSeq) 70, 324
BSU02890 yceC putative stress adaptation protein (RefSeq) 324, 388
BSU02900 yceD putative stress adaptation protein (RefSeq) 324, 388
BSU02910 yceE putative stress adaptation protein (RefSeq) 324, 388
BSU02920 yceF putative stress adaptation transporter (RefSeq) 324, 388
BSU02930 yceG hypothetical protein (RefSeq) 324, 388
BSU02940 yceH hypothetical protein (RefSeq) 324, 388
BSU09950 prsA molecular chaperone lipoprotein (RefSeq) 63, 324
BSU11590 yjbL putative phosphatase (RefSeq) 116, 194
BSU11600 yjbM (p)ppGpp synthetase (RefSeq) 116, 194
BSU11610 ppnK inorganic polyphosphate/ATP-NAD kinase (RefSeq) 194, 324
BSU14600 pdhC branched-chain alpha-keto acid dehydrogenase subunit E2 (RefSeq) 194, 355
BSU14790 ylaI hypothetical protein (RefSeq) 128, 324
BSU15370 ylmD hypothetical protein (RefSeq) 63, 194
BSU15380 ylmE hypothetical protein (RefSeq) 63, 194
BSU15410 ylmH factor involved in shape determination, RNA-binding fold (RefSeq) 194, 289
BSU16670 ribC bifunctional riboflavin kinase/FMN adenylyltransferase (RefSeq) 78, 324
BSU16890 ymfK hypothetical protein (RefSeq) 169, 194
BSU16900 ymfK ymfL (VIMSS) 169, 194
BSU16910 ymfM hypothetical protein (RefSeq) 63, 194
BSU18040 yneP putative acyl-CoA thioesterase (RefSeq) 324, 398
BSU23860 yqjI 6-phosphogluconate dehydrogenase (RefSeq) 78, 194
BSU23910 yqjE putative deacylase (RefSeq) 194, 273
BSU25040 yqgB factor involved in motility (RefSeq) 324, 378
BSU28220 clpX ATP-dependent protease ATP-binding subunit ClpX (RefSeq) 78, 324
BSU29190 pfkA 6-phosphofructokinase (RefSeq) 194, 253
BSU29220 ytsJ NADP-dependent malic enzyme (conversion of malate into pyruvate) (RefSeq) 188, 324
BSU29250 nrnA oligoribonuclease (nanoRNAse), 3',5'-bisphosphate nucleotidase (RefSeq) 128, 324
BSU29610 ezrA septation ring formation regulator EzrA (RefSeq) 63, 194
BSU31350 pgi glucose-6-phosphate isomerase (RefSeq) 194, 247
BSU31750 yueK nicotinate phosphoribosyltransferase (RefSeq) 63, 194
BSU31760 pncA nicotinamidase (RefSeq) 194, 247
BSU32670 sufB FeS cluster formation protein (RefSeq) 237, 324
BSU32680 iscU iron-sulfur cluster assembly scaffold protein (RefSeq) 237, 324
BSU32690 sufS cysteine desulfurase (RefSeq) 237, 324
BSU32700 sufD FeS assembly protein SufD (RefSeq) 237, 324
BSU32710 sufC sulfur mobilizing ABC protein, ATPase (RefSeq) 237, 324
BSU33900 eno phosphopyruvate hydratase (RefSeq) 194, 355
BSU33910 pgm phosphoglyceromutase (RefSeq) 194, 355
BSU33920 tpiA triosephosphate isomerase (RefSeq) 194, 355
BSU33930 pgk phosphoglycerate kinase (RefSeq) 194, 355
BSU37110 ywjH putative translaldolase (RefSeq) 194, 247
BSU37120 fbaA fructose-bisphosphate aldolase (RefSeq) 194, 247
BSU37340 ywiB hypothetical protein (RefSeq) 194, 247
BSU40090 ahpC alkyl hydroperoxide reductase (small subunit) (RefSeq) 237, 324
BSU40100 ahpF alkyl hydroperoxide reductase (large subunit) (RefSeq) 237, 324
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU11610
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend