Organism : Bacillus subtilis | Module List :
BSU20590 yoqL

putative endonuclease; phage SPbeta (RefSeq)

CircVis
Functional Annotations (2)
Function System
nucleic acid binding go/ molecular_function
endonuclease activity go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BSU20590
(Mouseover regulator name to see its description)

BSU20590 is regulated by 13 influences and regulates 0 modules.
Regulators for BSU20590 yoqL (13)
Regulator Module Operator
BSU01810 376 tf
BSU02160 376 tf
BSU19540 376 tf
BSU20010 376 tf
BSU20820 376 tf
BSU21020 376 tf
BSU26340 376 tf
BSU02160 400 tf
BSU19540 400 tf
BSU20010 400 tf
BSU20780 400 tf
BSU20820 400 tf
BSU21020 400 tf

Warning: BSU20590 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
5666 3.70e+00 accaCCTcCTt
Loader icon
5667 2.00e+03 aAtaaAgGaGAaaTg
Loader icon
5710 7.10e-07 aaTcTaaATaAAAttaAAaTTTTa
Loader icon
5711 3.10e+03 CATCCAATAGTGGATTTTTAAACC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BSU20590

BSU20590 is enriched for 2 functions in 2 categories.
Enrichment Table (2)
Function System
nucleic acid binding go/ molecular_function
endonuclease activity go/ molecular_function
Module neighborhood information for BSU20590

BSU20590 has total of 40 gene neighbors in modules 376, 400
Gene neighbors (40)
Gene Common Name Description Module membership
BSU19990 yosV conserved hypothetical protein; phage SPbeta (RefSeq) 223, 400
BSU20050 yosQ SPbeta phage endodeoxyribonuclease (homing endonuclease, responsible for intron mobility) (RefSeq) 223, 376
BSU20140 yosF hypothetical protein; phage SPbeta (RefSeq) 303, 376
BSU20200 yorZ hypothetical protein; phage SPbeta (RefSeq) 174, 376
BSU20220 yorX hypothetical protein; phage SPbeta (RefSeq) 86, 376
BSU20230 yorW hypothetical protein; phage SPbeta (RefSeq) 18, 376
BSU20270 yorS conserved hypothetical protein; phage SPbeta (RefSeq) 18, 376
BSU20280 yorR putative nucleotide kinase; phage SPbeta (RefSeq) 297, 376
BSU20290 yorQ hypothetical protein; phage SPbeta (RefSeq) 297, 376
BSU20300 yorP hypothetical protein; phage SPbeta (RefSeq) 297, 376
BSU20310 yorO hypothetical protein; phage SPbeta (RefSeq) 337, 376
BSU20320 yorN hypothetical protein; phage SPbeta (RefSeq) 174, 376
BSU20340 yorL putative DNA polymerase; phage SPbeta (RefSeq) 110, 376
BSU20410 yorE hypothetical protein; phage SPbeta (RefSeq) 110, 400
BSU20450 yorA putative capsid component; phage SPbeta (RefSeq) 331, 376
BSU20460 yoqZ conserved hypothetical protein; ; phage SPbeta (RefSeq) 232, 376
BSU20480 yoqX putative SPbeta phage protein (RefSeq) 337, 376
BSU20500 ligB ATP-dependent DNA ligase (RefSeq) 110, 376
BSU20510 yoqU conserved hypothetical protein; phage SPbeta (RefSeq) 303, 376
BSU20520 yoqT hypothetical protein; phage SPbeta (RefSeq) 303, 376
BSU20540 yoqR hypothetical protein; phage SPbeta (RefSeq) 223, 376
BSU20550 yoqP hypothetical protein; phage SPbeta (RefSeq) 303, 376
BSU20590 yoqL putative endonuclease; phage SPbeta (RefSeq) 376, 400
BSU20600 yoqK hypothetical protein; phage SPbeta (RefSeq) 223, 400
BSU20610 yoqJ conserved hypothetical protein; phage SPbeta (RefSeq) 223, 400
BSU20620 yoqI conserved hypothetical protein; phage SPbeta (RefSeq) 260, 400
BSU20630 yoqH conserved hypothetical protein; phage SPbeta (RefSeq) 260, 400
BSU20640 yoqG hypothetical protein; phage SPbeta (RefSeq) 223, 400
BSU20670 yoqD putative DNA-binding protein anti-repressor; phage SPbeta (RefSeq) 297, 400
BSU20690 yoqB hypothetical protein; phage SPbeta (RefSeq) 297, 400
BSU20720 yopY conserved hypothetical protein; phage SPbeta (RefSeq) 297, 376
BSU20730 yopX hypothetical protein; phage SPbeta (RefSeq) 260, 400
BSU20740 yopW hypothetical protein; phage SPbeta (RefSeq) 110, 400
BSU20760 yopU hypothetical protein; phage SPbeta (RefSeq) 260, 400
BSU20950 yopB putative transcriptional regulator; phage SPbeta (RefSeq) 223, 376
BSU20980 yonV conserved hypothetical protein; phage SPbeta (RefSeq) 174, 376
BSU21050 yonN putative HU-related DNA-binding protein; phage SPbeta (RefSeq) 232, 400
BSU21080 yonI conserved hypothetical protein; phage SPbeta (RefSeq) 260, 400
BSU21090 yonH putative capsid protein; phage SPbeta (RefSeq) 232, 400
BSU21420 bhlA bacteriophage SPbeta holin-like protein (RefSeq) 18, 376
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BSU20590
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend