Organism : Bacillus subtilis | Module List:
Module 127 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 127

There are 19 regulatory influences for Module 127

Regulator Table (19)
Regulator Name Type
BSU25760 tf
BSU00330 tf
BSU08340 tf
BSU37620 tf
BSU36420 tf
BSU14240 tf
BSU40670 tf
BSU40970 tf
BSU29270 tf
BSU09830 tf
BSU01690 tf
BSU13450 tf
BSU33580 tf
BSU01740 tf
BSU27520 tf
BSU29400 tf
BSU35050 tf
BSU14380 tf
BSU24320 tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
5206 1.60e-04 CCtctCttTTg
Loader icon
5207 1.50e+02 CCTGTCCC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 127 is enriched for following functions.

TIGRFam Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Cellular processes tigr mainrole 7.32e-03 9.79e-03 3/27
Sporulation and germination tigr sub1role 1.56e-03 2.46e-03 3/27

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Amino acid transport and metabolism cog subcategory 1.31e-02 2.09e-02 5/27
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 127

There are 27 genes in Module 127

Gene Member Table (27)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
BSU02600 cwlJ CDS None chromosome 282009 282437 + cell wall hydrolase (RefSeq) False
BSU10780 yisN CDS None chromosome 1155809 1156396 - hypothetical protein (RefSeq) False
BSU10790 asnO CDS None chromosome 1156542 1158386 + asparagine synthetase (RefSeq) False
BSU11390 appB CDS None chromosome 1214552 1215505 + oligopeptide ABC transporter (permease) (RefSeq) False
BSU11400 appC CDS None chromosome 1215522 1216433 + oligopeptide ABC transporter (permease) (RefSeq) False
BSU11410 yjbA CDS None chromosome 1216639 1217391 + putative nucleic acid binding protein (RefSeq) False
BSU12050 yjdH CDS None chromosome 1276388 1276792 - hypothetical protein (RefSeq) False
BSU12400 yjnA CDS None chromosome 1312161 1312925 - putative integral inner membrane protein (RefSeq) False
BSU18720 yoaR CDS None chromosome 2041138 2042049 - putative factor for cell wall maintenance or synthesis (RefSeq) False
BSU19110 yobW CDS None chromosome 2083425 2083970 + mother cell-specific membrane sporulation protein (RefSeq) False
BSU25600 comER CDS None chromosome 2640437 2641258 + late competence protein ComER (RefSeq) False
BSU25760 spoIVCB CDS None chromosome 2652219 2652689 + RNA polymerase sporulation-specific sigma factor (sigma-K) (N-terminal half) (RefSeq) True
BSU27670 spoVB CDS None chromosome 2828790 2830346 + putative putative translocase with flippase function for teichoic acid synthesis; involved in spore cortex synthesis (stage V sporulation) (RefSeq) False
BSU29910 ytzH CDS None chromosome 3059444 3059722 + hypothetical protein (RefSeq) False
BSU30710 ythA CDS None chromosome 3138494 3139810 + putative cytochrome d oxidase subunit (RefSeq) False
BSU32270 yutH CDS None chromosome 3315356 3316375 - spore coat-associated protein (RefSeq) False
BSU33050 gerAA CDS None chromosome 3389809 3391257 + component of the GerA germination receptor (RefSeq) False
BSU33060 gerAB CDS None chromosome 3391226 3392323 + component of the germination receptor GerA (RefSeq) False
BSU33070 gerAC CDS None chromosome 3392320 3393441 + component of the germination receptor GerA (RefSeq) False
BSU37690 ywfG CDS None chromosome 3867309 3868508 - transaminase (RefSeq) False
BSU37700 bacE CDS None chromosome 3868509 3869693 - efflux protein for bacilysin excretion, self-protection against bacilysin (RefSeq) False
BSU37710 bacD CDS None chromosome 3869690 3871108 - alanine-anticapsin ligase (RefSeq) False
BSU37720 bacC CDS None chromosome 3871127 3871894 - bacilysin biosynthesis oxidoreductase (RefSeq) False
BSU37730 bacB CDS None chromosome 3871891 3872598 - isomerase component of bacilysin synthetase (RefSeq) False
BSU38350 ywbE CDS None chromosome 3934613 3934810 + hypothetical protein (RefSeq) False
VIMSS37638 VIMSS37638 DUMMY None chromosome 0 0 + None False
VIMSS39549 VIMSS39549 DUMMY None chromosome 0 0 + None False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.