Organism : Clostridium acetobutylicum | Module List :
CAC1525

Uncharacterized protein, homolog of PHNB E.coli (NCBI ptt file)

CircVis
Functional Annotations (1)
Function System
Uncharacterized protein conserved in bacteria cog/ cog
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC1525
(Mouseover regulator name to see its description)

CAC1525 is regulated by 21 influences and regulates 0 modules.
Regulators for CAC1525 (21)
Regulator Module Operator
CAC0255 190 tf
CAC0933 190 tf
CAC1463 190 tf
CAC1536 190 tf
CAC1668 190 tf
CAC1698 190 tf
CAC2306 190 tf
CAC3472 190 tf
CAC3488 190 tf
CAC3494 190 tf
CAC0255 169 tf
CAC1280 169 tf
CAC1483 169 tf
CAC1867 169 tf
CAC1869 169 tf
CAC1928 169 tf
CAC3271 169 tf
CAC3361 169 tf
CAC3370 169 tf
CAC3433 169 tf
CAC3488 169 tf

Warning: CAC1525 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
6990 1.20e-06 caCCTCctA
Loader icon
6991 2.00e+02 cAcATGAaaAaCaTattacacaGg
Loader icon
7032 9.50e-02 cACCTC
Loader icon
7033 1.60e+02 TtttaggaGgA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC1525

CAC1525 is enriched for 1 functions in 3 categories.
Enrichment Table (1)
Function System
Uncharacterized protein conserved in bacteria cog/ cog
Module neighborhood information for CAC1525

CAC1525 has total of 51 gene neighbors in modules 169, 190
Gene neighbors (51)
Gene Common Name Description Module membership
CAC0169 CAC0169 ABC transporter (ATP-binding protein) (NCBI ptt file) 169, 202
CAC0170 CAC0170 Predicted permease (NCBI ptt file) 169, 202
CAC0171 CAC0171 Predicted permease (NCBI ptt file) 169, 202
CAC0227 CAC0227 Predicted permease (NCBI ptt file) 169, 208
CAC0257 nifK Nitrogenase molibdenum-iron protein, beta chain, gene nifK (NCBI ptt file) 144, 169
CAC0260 nifV Homocitrate syntase, omega subunit nifV (nivO) (NCBI ptt file) 141, 169
CAC0295 CAC0295 Metal-dependent amidohydrolases (NCBI ptt file) 108, 190
CAC0343 CAC0343 Hypothetical protein, CF-23 family (NCBI ptt file) 190, 258
CAC0431 CAC0431 Hypothetical protein, YitT family (NCBI ptt file) 169, 207
CAC0619 CAC0619 Nitrate ABC transporter ATP binding protein (NCBI ptt file) 190, 270
CAC0670 CAC0670 Hypothetical protein (NCBI ptt file) 169, 190
CAC0671 CAC0671 Ortholog yrbG, yetE, ykjA, ydfS, ydfR B.subtilis (NCBI ptt file) 169, 190
CAC0762 CAC0762 Permease, probably tetracycline resistance protein (NCBI ptt file) 169, 240
CAC0924 CAC0924 Predicted membrane protein (NCBI ptt file) 145, 190
CAC0955 CAC0955 ATP-dependent Zn protease (NCBI ptt file) 150, 190
CAC1017 CAC1017 SpoVB related membrane protein (NCBI ptt file) 108, 169
CAC1271 CAC1271 ComC competence related protein (NCBI ptt file) 190, 312
CAC1331 CAC1331 Short-chain alcohol dehydrogenase (NCBI ptt file) 148, 169
CAC1332 uxuA D-mannonate hydrolase (NCBI ptt file) 150, 169
CAC1350 CAC1350 Hypothetical protein (NCBI ptt file) 102, 190
CAC1359 CAC1359 Predicted xylanase/chitin deacetylase (NCBI ptt file) 150, 190
CAC1525 CAC1525 Uncharacterized protein, homolog of PHNB E.coli (NCBI ptt file) 169, 190
CAC1529 CAC1529 Beta-xylosidase, family 43 glycosyl hydrolase (NCBI ptt file) 169, 170
CAC1530 CAC1530 Sugar-proton symporter (NCBI ptt file) 169, 328
CAC1865 CAC1865 Site-specific recombinases, DNA invertase Pin homolog (NCBI ptt file) 190, 336
CAC1959 CAC1959 Uncharacterized protein, YYAC B.subtilis homolog (fragment) (NCBI ptt file) 190, 208
CAC2039 CAC2039 Hypothetical protein, CF-5 family (NCBI ptt file) 44, 190
CAC2454 CAC2454 Hypothetical protein, CF-13 family (NCBI ptt file) 190, 264
CAC2506 CAC2506 SpoIID-like domain containing protein; peptidoglycan-binding domain (NCBI ptt file) 102, 190
CAC2560 CAC2560 Predicted acetyltransferase (NCBI ptt file) 69, 190
CAC2567 CAC2567 Superoxide dismutase (Fe/Mn family) (NCBI ptt file) 141, 190
CAC2586 CAC2586 Predicted membrane protein (NCBI ptt file) 123, 169
CAC2587 CAC2587 GGDEF domain containing protein (NCBI ptt file) 150, 169
CAC2588 CAC2588 Glycosyltransferase (NCBI ptt file) 150, 169
CAC2589 CAC2589 Glycosyltransferase (NCBI ptt file) 169, 240
CAC2590 CAC2590 Uncharacterized conserved membrane protein (NCBI ptt file) 144, 169
CAC2591 CAC2591 Hypothetical protein, CF-41 family (NCBI ptt file) 144, 169
CAC2614 CAC2614 Beta-phosphoglucomutase (NCBI ptt file) 141, 190
CAC2804 CAC2804 Predicted Zn-dependent hydrolase from metallo-beta-lactamase superfamily (NCBI ptt file) 144, 169
CAC2908 CAC2908 Spore coat protein cotS related (NCBI ptt file) 190, 312
CAC2909 CAC2909 Spore coat protein cotS related (diverged) (NCBI ptt file) 114, 190
CAC2910 CAC2910 Spore coat protein cotS related (NCBI ptt file) 190, 312
CAC3246 CAC3246 Hypothetical protein (NCBI ptt file) 145, 190
CAC3307 CAC3307 TPR-repeats containing protein (NCBI ptt file) 109, 190
CAC3308 CAC3308 Glycosyltransferase fused to TPR-repeat domain (NCBI ptt file) 3, 190
CAC3310 CAC3310 Predicted UDP-glucose 6-dehydrogenase (NCBI ptt file) 19, 190
CAC3416 CAC3416 Uncharacterized protein, homolog of YYBI B.subtilis fused to uncharacterized domain similar to A.thaliana (gi:3292817 and 5002526) (NCBI ptt file) 190, 361
CAC3480 CAC3480 Hypothetical protein (NCBI ptt file) 141, 190
CAC3483 CAC3483 Nitroreductase family protein fused to ferredoxin domain (NCBI ptt file) 1, 169
CAC3531 CAC3531 IS605/IS200-like transposase (NCBI ptt file) 190, 247
CAC3549 CAC3549 Subtilisin-like serine protease (NCBI ptt file) 150, 190
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC1525
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend