Organism : Clostridium acetobutylicum | Module List :
CAC2554

Hypothetical protein (NCBI ptt file)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC2554
(Mouseover regulator name to see its description)

CAC2554 is regulated by 16 influences and regulates 0 modules.
Regulators for CAC2554 (16)
Regulator Module Operator
CAC0113 346 tf
CAC0174 346 tf
CAC0723 346 tf
CAC0859 346 tf
CAC1766 346 tf
CAC3406 346 tf
CAC3611 346 tf
CAC0113 13 tf
CAC0174 13 tf
CAC0201 13 tf
CAC0723 13 tf
CAC1578 13 tf
CAC3406 13 tf
CAC3413 13 tf
CAC3424 13 tf
CAC3512 13 tf

Warning: CAC2554 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
6680 1.10e+01 GGaGggaTtA
Loader icon
6681 1.10e+03 CgaGCgatAcc
Loader icon
7344 1.10e-04 AtGGaGG
Loader icon
7345 6.00e+02 CaGac.ctg.tTaacataa.AagC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC2554

Warning: No Functional annotations were found!

Module neighborhood information for CAC2554

CAC2554 has total of 47 gene neighbors in modules 13, 346
Gene neighbors (47)
Gene Common Name Description Module membership
CAC0113 CAC0113 Transcriptional regulator of sugar metabolism (NCBI ptt file) 20, 346
CAC0135 CAC0135 Hypothetical protein, CF-23 family (NCBI ptt file) 13, 247
CAC0235 CAC0235 Chloramphenicol acetyltransferase (NCBI ptt file) 140, 346
CAC0236 CAC0236 ABC-type multidrug transport system, ATP-ase component (NCBI ptt file) 140, 346
CAC0238 CAC0238 ABC transporter, permease component (NCBI ptt file) 259, 346
CAC0239 CAC0239 Histidine kinase-like ATPase (NCBI ptt file) 185, 346
CAC0248 CAC0248 Transposon related protein (NCBI ptt file) 13, 117
CAC0325 CAC0325 Uncharacterized membrane protein, homolog of YtaF B.subtilis (NCBI ptt file) 13, 117
CAC0400 CAC0400 Hypothetical protein, CF-19 family (NCBI ptt file) 91, 346
CAC0450 CAC0450 Response regulator (CheY-like and HTH domains) (NCBI ptt file) 13, 66
CAC0451 CAC0451 Sensory transduction histidine kinase (HAMP, HisKA, HATPase domains) (NCBI ptt file) 13, 140
CAC0547 CAC0547 Lactoylglutation lyase (NCBI ptt file) 346, 366
CAC0589 birA Biotin-(acetyl-CoA carboxylase)ligase (NCBI ptt file) 13, 140
CAC0648 CAC0648 Molecular chaperone, DnaJ family (contain C-term. Zn finger domain) (NCBI ptt file) 149, 346
CAC0778 CAC0778 ATP-dependent RNA helicase, superfamily II (NCBI ptt file) 13, 66
CAC0820 CAC0820 Conserved protein, ortholog YwqG B.subtilis (NCBI ptt file) 13, 66
CAC0968 CAC0968 Hypothetical protein (NCBI ptt file) 140, 346
CAC1012 CAC1012 Uncharacterized membrane protein, homolog of YNGA/YWCD B.suntilis (NCBI ptt file) 13, 69
CAC1040 CAC1040 Predicted amidohydrolases (NCBI ptt file) 185, 346
CAC1076 CAC1076 Hypothetical protein, CF-32 family (NCBI ptt file) 140, 346
CAC1371 CAC1371 Possible kinase, diverged (NCBI ptt file) 13, 55
CAC1381 cbiJ/cobK precorrin-6x reductase (NCBI ptt file) 13, 55
CAC1419 CAC1419 Uncharacterized proteins, homologs of microcin C7 resistance protein MccF (NCBI ptt file) 283, 346
CAC1482 CAC1482 Uncharacterized membrane protein,ortholog of YDFK B.subtilis (NCBI ptt file) 158, 346
CAC1500 CAC1500 Predicted membrane protein (NCBI ptt file) 13, 351
CAC1502 CAC1502 Hypothetical protein (NCBI ptt file) 71, 346
CAC1507 phoR Sensory transduction histidine kinase (with HAMP domain) (NCBI ptt file) 205, 346
CAC1558 CAC1558 ABC-type transport system,membrane ATPase component (NCBI ptt file) 1, 346
CAC1852 CAC1852 Magnesium and cobalt transport protein (NCBI ptt file) 106, 346
CAC2174 CAC2174 Glycosyltransferase (NCBI ptt file) 82, 346
CAC2348 CAC2348 Glycosyltransferase (NCBI ptt file) 13, 312
CAC2349 CAC2349 Hypothetical protein (NCBI ptt file) 13, 100
CAC2453 CAC2453 CBS domain containing protein (NCBI ptt file) 13, 346
CAC2478 CAC2478 Predicted conserved membrane protein, possible homolog of CAAX-like membrane endopeptidase (NCBI ptt file) 13, 149
CAC2554 CAC2554 Hypothetical protein (NCBI ptt file) 13, 346
CAC2555 CAC2555 Hypothetical protein (NCBI ptt file) 13, 149
CAC2661 ftsX Cell division protein FtsX (NCBI ptt file) 72, 346
CAC2696 CAC2696 Predicted membrane protein (NCBI ptt file) 117, 346
CAC2907 CAC2907 Glycosyltransferase (NCBI ptt file) 13, 117
CAC2962 CAC2962 Transcriptional regulators of the LacI family (NCBI ptt file) 261, 346
CAC3091 CAC3091 Fumarate hydratase, subunit A (N-terminal domain of FumA E.coli) class I (NCBI ptt file) 3, 13
CAC3240 CAC3240 Predicted membrane protein (NCBI ptt file) 13, 150
CAC3265 CAC3265 Predicted membrane protein (NCBI ptt file) 13, 99
CAC3364 CAC3364 Barstar-like protein, ribonuclease (barnase) inhibitor (NCBI ptt file) 92, 346
CAC3587 CAC3587 DNA replication protein DnaD (NCBI ptt file) 13, 287
CAC3596 pgsA Phosphatidylglycerophosphate synthase (NCBI ptt file) 13, 99
CAC3692 CAC3692 Hypothetical protein (NCBI ptt file) 13, 196
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC2554
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend