Organism : Clostridium acetobutylicum | Module List :
CAC3290

Iron-regulated ABC-type transporter membrane component (SufB) (NCBI ptt file)

CircVis
Functional Annotations (4)
Function System
ABC-type transport system involved in Fe-S cluster assembly, permease component cog/ cog
protein binding go/ molecular_function
iron-sulfur cluster assembly go/ biological_process
sufD tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC3290
(Mouseover regulator name to see its description)

CAC3290 is regulated by 28 influences and regulates 0 modules.
Regulators for CAC3290 (28)
Regulator Module Operator
CAC0183 201 tf
CAC0191 201 tf
CAC0493 201 tf
CAC0951 201 tf
CAC1280 201 tf
CAC1559 201 tf
CAC1900 201 tf
CAC2084 201 tf
CAC2690 201 tf
CAC3037 201 tf
CAC3152 201 tf
CAC3651 201 tf
CAC3729 201 tf
CAC3731 201 tf
CAC0255 209 tf
CAC0745 209 tf
CAC0821 209 tf
CAC1300 209 tf
CAC1426 209 tf
CAC1668 209 tf
CAC1766 209 tf
CAC2052 209 tf
CAC2394 209 tf
CAC2552 209 tf
CAC2842 209 tf
CAC3037 209 tf
CAC3063 209 tf
CAC3324 209 tf

Warning: CAC3290 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7054 1.60e-07 aggGGtG
Loader icon
7055 3.20e+03 GGAGCGaTcAC
Loader icon
7070 7.00e+01 CAacaGGcGg
Loader icon
7071 7.60e+03 CGGtCc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC3290

CAC3290 is enriched for 4 functions in 3 categories.
Enrichment Table (4)
Function System
ABC-type transport system involved in Fe-S cluster assembly, permease component cog/ cog
protein binding go/ molecular_function
iron-sulfur cluster assembly go/ biological_process
sufD tigr/ tigrfam
Module neighborhood information for CAC3290

CAC3290 has total of 45 gene neighbors in modules 201, 209
Gene neighbors (45)
Gene Common Name Description Module membership
CAC0272 CAC0272 Amino acid transporter (NCBI ptt file) 201, 215
CAC0330 CAC0330 Propiloprotein diacylglyceryltransferase (NCBI ptt file) 201, 215
CAC0558 CAC0558 Hypothetical protein (NCBI ptt file) 201, 206
CAC0689 ntH Predicted endonuclease, gene nth (NCBI ptt file) 58, 201
CAC0815 CAC0815 Methyl-accepting chemotaxis protein (NCBI ptt file) 134, 209
CAC0816 CAC0816 Lipase-esterase related protein (NCBI ptt file) 176, 209
CAC0869 CAC0869 Thioredoxine reductase (NCBI ptt file) 31, 209
CAC0961 CAC0961 Cobyric acid synthase CobQ (NCBI ptt file) 151, 201
CAC0982 CAC0982 Hypothetical protein (NCBI ptt file) 209, 266
CAC0993 dacF D-alanyl-D-alanine carboxypeptidase (penicilin binding protein) (NCBI ptt file) 201, 352
CAC1280 hrcA Transcriptional regulator of heat shock genes, HrcA (NCBI ptt file) 128, 201
CAC1285 CAC1285 Uncharacterized conserved protein, ortholog of YQEU B.subtilis (NCBI ptt file) 201, 352
CAC1669 CstA Carbon starvation protein (NCBI ptt file) 209, 238
CAC1691 CAC1691 Predicted glycosyltransferase (NCBI ptt file) 201, 211
CAC1692 ftsA Cell division protein, ftsA (NCBI ptt file) 29, 201
CAC1764 CAC1764 Predicted glutamine amidotransferase (NCBI ptt file) 31, 209
CAC1807 rpsO Ribosomal Protein S15 (NCBI ptt file) 201, 352
CAC1854 CAC1854 Nudix (MutT) family hydrolase (NCBI ptt file) 209, 277
CAC2004 CAC2004 Siderophore/Surfactin synthetase related protein (NCBI ptt file) 60, 209
CAC2007 CAC2007 Predicted glycosyltransferase (NCBI ptt file) 97, 209
CAC2011 fabH Possible 3-oxoacyl-[acyl-carrier-protein] synthase III (NCBI ptt file) 97, 209
CAC2016 fadB Enoyl-CoA hydratase (NCBI ptt file) 97, 209
CAC2017 CAC2017 Acyl carrier protein (NCBI ptt file) 134, 209
CAC2018 CAC2018 Aldehyde:ferredoxin oxidoreductase (NCBI ptt file) 134, 209
CAC2021 moeA Molybdopterin biosynthesis enzyme, MoeA (short form) (NCBI ptt file) 133, 209
CAC2022 moaB Molybdopterin biosynthesis enzyme, moaB (NCBI ptt file) 209, 282
CAC2025 CAC2025 Hypothetical protein (NCBI ptt file) 209, 282
CAC2120 CAC2120 Uncharacterized protein, YlmF B.subtilis ortholog (NCBI ptt file) 25, 201
CAC2121 CAC2121 Predicted enzyme with a TIM-barrel fold (NCBI ptt file) 11, 201
CAC2132 CAC2132 Predicted S-adenosylmethionine-dependent methyltransferase, involved in cell envelope biogenesis YLXA B.subtilis ortholog (NCBI ptt file) 201, 239
CAC2182 CAC2182 Hypothetical protein (NCBI ptt file) 209, 348
CAC2355 CAC2355 Hypothetical protein (NCBI ptt file) 25, 201
CAC2446 CAC2446 Hypothetical protein (NCBI ptt file) 27, 209
CAC2646 sipS Signal peptidase I (NCBI ptt file) 201, 295
CAC2647 CAC2647 Diverged arginase family hydrolase (NCBI ptt file) 201, 289
CAC2847 CAC2847 Ribosome-associated protein Y (PSrp-1) (NCBI ptt file) 128, 201
CAC3037 ccpA Catabolite control protein, LacI family transcriptional regulator (NCBI ptt file) 11, 209
CAC3201 CAC3201 Formate--tetrahydrofolate ligase (NCBI ptt file) 201, 292
CAC3279 CAC3279 Possible surface protein, responsible for cell interaction; contains cell adhesion domain and ChW-repeats (NCBI ptt file) 209, 261
CAC3288 CAC3288 Iron-regulated ABC transporter ATPase subunit (SufC), VEG296 B.subtilis ortholog (NCBI ptt file) 201, 296
CAC3290 CAC3290 Iron-regulated ABC-type transporter membrane component (SufB) (NCBI ptt file) 201, 209
CAC3291 CAC3291 Selenocysteine lyase, NifS family (NCBI ptt file) 209, 296
CAC3292 CAC3292 NifU homolog involved in Fe-S cluster formation (NCBI ptt file) 209, 277
CAC3592 CAC3592 Hypothetical protein, CF-27 family (NCBI ptt file) 92, 209
CAC3739 rpmH L34 (NCBI ptt file) 201, 281
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC3290
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend