Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU0112
deoxyribodipyrimidine photolyase
Functional Annotations (3)
Function | System |
---|---|
Deoxyribodipyrimidine photolyase | cog/ cog |
deoxyribodipyrimidine photo-lyase activity | go/ molecular_function |
DNA repair | go/ biological_process |
Regulation information for DVU0112
(Mouseover regulator name to see its description)
Regulator | Module | Operator |
---|---|---|
DVU0309 DVU0525 |
318 | combiner |
DVU0525 | 318 | tf |
DVU0813 DVU0230 |
318 | combiner |
DVU0916 | 318 | tf |
DVU0946 | 318 | tf |
DVU1518 DVU1730 |
318 | combiner |
DVU1584 DVU0653 |
318 | combiner |
DVU1645 DVUA0151 |
318 | combiner |
DVU3255 DVU0653 |
318 | combiner |
DVUA0151 | 318 | tf |
DVU0063 DVU0529 |
198 | combiner |
DVU0309 DVU2275 |
198 | combiner |
DVU0529 DVU2989 |
198 | combiner |
DVU0916 | 198 | tf |
DVU2036 DVU2547 |
198 | combiner |
DVU2275 | 198 | tf |
DVU2547 | 198 | tf |
DVU2547 DVU0619 |
198 | combiner |
DVU2547 DVU0946 |
198 | combiner |
DVU2547 DVU1628 |
198 | combiner |
DVU2557 | 198 | tf |
DVU2934 | 198 | tf |
DVUA0143 DVU2989 |
198 | combiner |
DVUA0151 | 198 | tf |
Motif information (de novo identified motifs for modules)
There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.
Motif Id | e-value | Consensus | Motif Logo | RegPredict |
---|---|---|---|---|
379 | 3.50e+01 | CAAgGAgCaca | RegPredict | |
380 | 2.20e+04 | TcTTCaGg | RegPredict | |
605 | 3.40e+02 | CTtTTccg | RegPredict | |
606 | 1.00e+04 | GCaTTCCGaCgTcG | RegPredict |
Functional Enrichment for DVU0112
Function | System |
---|---|
Deoxyribodipyrimidine photolyase | cog/ cog |
deoxyribodipyrimidine photo-lyase activity | go/ molecular_function |
DNA repair | go/ biological_process |
Module neighborhood information for DVU0112
Gene | Common Name | Description | Module membership |
---|---|---|---|
DVU0112 | deoxyribodipyrimidine photolyase | 198, 318 | |
DVU0221 | tail fiber assembly protein | 198, 314 | |
DVU0540 | sensor histidine kinase | 162, 198 | |
DVU0608 | methyl-accepting chemotaxis protein | 105, 198 | |
DVU0615 | hypothetical protein DVU0615 | 150, 198 | |
DVU0619 | sigma-54 dependent transcriptional regulator | 63, 198 | |
DVU0676 | His/Glu/Gln/Arg/opine ABC transporter permease | 153, 198 | |
DVU0683 | hflC protein | 194, 198 | |
DVU0721 | sensory box histidine kinase | 198, 318 | |
DVU0741 | hypothetical protein DVU0741 | 115, 198 | |
DVU0744 | sigma-54 dependent transcriptional regulator/response regulator | 115, 198 | |
DVU0755 | sensor histidine kinase | 105, 198 | |
DVU0803 | sensor histidine kinase | 198, 201 | |
DVU0855 | radical SAM domain-containing protein | 57, 198 | |
DVU0875 | fumarylacetoacetate hydrolase family protein | 318, 331 | |
DVU0903 | HD domain-containing protein | 17, 198 | |
DVU0910 | fliM | flagellar motor switch protein FliM | 194, 198 |
DVU0941 | M16 family peptidase | 16, 318 | |
DVU0954 | organic solvent tolerance protein | 98, 318 | |
DVU0992 | cheV-3 | chemotaxis protein CheV | 105, 198 |
DVU1279 | folP | dihydropteroate synthase | 198, 330 |
DVU1338 | hypothetical protein DVU1338 | 112, 198 | |
DVU1428 | pgm | phosphoglucomutase | 268, 318 |
DVU1446 | heptosyltransferase family protein | 318, 341 | |
DVU1447 | CgeB family protein | 198, 318 | |
DVU1448 | hypothetical protein DVU1448 | 198, 318 | |
DVU1449 | anti-anti-sigma factor | 71, 318 | |
DVU1450 | anti-sigma factor | 71, 318 | |
DVU1451 | response regulator | 318, 341 | |
DVU1452 | dtd | D-tyrosyl-tRNA(Tyr) deacylase | 14, 318 |
DVU1453 | fadD | long-chain-fatty-acid--CoA ligase | 230, 318 |
DVU1549 | hypothetical protein DVU1549 | 112, 198 | |
DVU1681 | mreB-2 | rod shape-determining protein MreB | 318, 348 |
DVU1683 | hypothetical protein DVU1683 | 181, 318 | |
DVU1684 | gcvT | glycine cleavage system T protein | 318, 348 |
DVU1685 | 16S ribosomal RNA methyltransferase RsmE | 318, 348 | |
DVU1686 | recombination factor protein RarA | 318, 348 | |
DVU1687 | glycosyl transferase group 2 family protein | 12, 318 | |
DVU1771 | hydC | [Fe] hydrogenase gamma [Desulfovibrio vulgaris str. Hildenborough] | 175, 198 |
DVU1803 | glycosyl transferase group 1 family protein | 12, 198 | |
DVU1830 | hypothetical protein DVU1830 | 194, 198 | |
DVU1844 | septum formation initiator family protein | 318, 337 | |
DVU1939 | anaerobic glycerol-3-phosphate dehydrogenase subunit B | 198, 267 | |
DVU1986 | hypothetical protein DVU1986 | 192, 198 | |
DVU2019 | hypothetical protein DVU2019 | 175, 198 | |
DVU2083 | relA | GTP pyrophosphokinase | 145, 318 |
DVU2091 | thiE-1 | thiamine-phosphate pyrophosphorylase | 198, 225 |
DVU2142 | surE | acid phosphatase SurE | 176, 198 |
DVU2238 | RNA methyltransferase | 55, 318 | |
DVU2332 | proC | pyrroline-5-carboxylate reductase | 64, 318 |
DVU2361 | hypothetical protein DVU2361 | 161, 198 | |
DVU2391 | hypothetical protein DVU2391 | 198, 214 | |
DVU2576 | oligopeptide ABC transporter ATP-binding protein | 174, 318 | |
DVU2674 | succinate dehydrogenase and fumarate reductase iron-sulfur protein | 172, 318 | |
DVU2763 | TPR/GGDEF domain-containing protein | 175, 198 | |
DVU2813 | hypothetical protein DVU2813 | 175, 198 | |
DVU2934 | sigma-54 dependent transcriptional regulator/response regulator | 198, 291 | |
DVU3220 | sigma-54 dependent transcriptional regulator/response regulator | 115, 198 | |
DVU3222 | pgi | glucose-6-phosphate isomerase | 83, 198 |
DVU3225 | hypothetical protein DVU3225 | 37, 198 | |
DVU3266 | hypothetical protein DVU3266 | 123, 198 |
Gene Page Help
Network Tab
If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.
Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.
Regulation Tab
Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.
If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.
You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".
For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.
Motifs Tab
Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.
Functions Tab
Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.
Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.
Module Members Tab
Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.
Help Tab
This help page. More general help can be accessed by clicking help menu in the main navigation bar.
CircVis
Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;- 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
- 2. Source gene
- 3. Target genes (other module members)
- 4. Interactions between source and target genes for a particular module
- 5. Module(s) that source gene and target genes belong to
- 6. Visualisation legend
Social Tab
Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.
Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.
In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.