Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU1134 hupB

DNA-binding protein HU subunit beta

CircVis
Functional Annotations (2)
Function System
Bacterial nucleoid DNA-binding protein cog/ cog
DNA binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for DVU1134
(Mouseover regulator name to see its description)

DVU1134 is regulated by 19 influences and regulates 0 modules.
Regulators for DVU1134 hupB (19)
Regulator Module Operator
DVU0230
DVU1142
183 combiner
DVU0539 183 tf
DVU0679
DVU2690
183 combiner
DVU0682
DVU0110
183 combiner
DVU1156 183 tf
DVU1517
DVU0539
183 combiner
DVU2690 183 tf
DVU2836
DVU2275
183 combiner
DVU3167
DVU0682
183 combiner
DVU0379
DVU2934
95 combiner
DVU0569 95 tf
DVU0679
DVU2934
95 combiner
DVU1674
DVU1402
95 combiner
DVU1674
DVU1517
95 combiner
DVU1674
DVU2956
95 combiner
DVU1674
DVU3095
95 combiner
DVU2359
DVU2934
95 combiner
DVU2423
DVU3095
95 combiner
DVU3381 95 tf

Warning: DVU1134 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.

Motif Table (4)
Motif Id e-value Consensus Motif Logo RegPredict
183 8.10e+02 TTTTTCa
Loader icon
RegPredict
184 4.60e+02 tgCcGcCcTgccGaCA
Loader icon
RegPredict
349 5.20e+03 Gtt.cgc.gcgtaAtC.gcCT
Loader icon
RegPredict
350 1.10e+04 GCCAcA
Loader icon
RegPredict
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for DVU1134

DVU1134 is enriched for 2 functions in 3 categories.
Enrichment Table (2)
Function System
Bacterial nucleoid DNA-binding protein cog/ cog
DNA binding go/ molecular_function
Module neighborhood information for DVU1134

DVU1134 has total of 19 gene neighbors in modules 95, 183
Gene neighbors (19)
Gene Common Name Description Module membership
DVU0075 aminotransferase 95, 251
DVU0085 trpB-1 tryptophan synthase subunit beta 5, 95
DVU0116 polysaccharide deacetylase family protein 95, 183
DVU0143 hypothetical protein DVU0143 95, 137
DVU0144 cytidyltransferase-like protein 25, 95
DVU1099 tail fiber assembly protein 84, 183
DVU1134 hupB DNA-binding protein HU subunit beta 95, 183
DVU1139 bacteriophage DNA transposition B protein 183, 231
DVU1281 hypothetical protein DVU1281 95, 294
DVU1765 thiH thiamine biosynthesis protein ThiH 95, 261
DVU1767 biotin synthase 95, 261
DVU1768 GTP-binding protein 95, 261
DVU1799 fusA-2 elongation factor G 95, 271
DVU1882 HDIG domain-containing protein 95, 249
DVU2188 primase 183, 254
DVU2603 hypothetical protein DVU2603 76, 183
DVU2605 hypothetical protein DVU2605 76, 183
DVU2705 phage protein 168, 183
DVU3012 hypothetical protein DVU3012 95, 112
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for DVU1134
Please add your comments for this gene by using the form below. Your comments will be publicly available.

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend