Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU2075

ParA family protein

CircVis
Functional Annotations (3)
Function System
ATPases involved in chromosome partitioning cog/ cog
cobalamin biosynthetic process go/ biological_process
cobyrinic acid a,c-diamide synthase activity go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for DVU2075
(Mouseover regulator name to see its description)

DVU2075 is regulated by 24 influences and regulates 0 modules.
Regulators for DVU2075 (24)
Regulator Module Operator
DVU0525 144 tf
DVU0653
DVU2251
144 combiner
DVU0813
DVU2832
144 combiner
DVU0936 144 tf
DVU1754
DVU2111
144 combiner
DVU1967 144 tf
DVU2686 144 tf
DVU3111
DVU2832
144 combiner
DVU3193
DVU2251
144 combiner
DVUA0024 144 tf
DVU0118 77 tf
DVU0309
DVU1964
77 combiner
DVU0309
DVU3023
77 combiner
DVU0436 77 tf
DVU0682 77 tf
DVU0682
DVU0309
77 combiner
DVU0804 77 tf
DVU1517 77 tf
DVU1561
DVU0804
77 combiner
DVU2097
DVU1561
77 combiner
DVU2394 77 tf
DVU2588
DVU2934
77 combiner
DVU2675
DVU2588
77 combiner
DVU2675
DVUA0024
77 combiner

Warning: DVU2075 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.

Motif Table (4)
Motif Id e-value Consensus Motif Logo RegPredict
151 2.60e+02 caATaAtGgAaa.A
Loader icon
RegPredict
152 2.40e+03 G.AAaATaAT
Loader icon
RegPredict
275 1.90e+00 ggCAgGgCATcgtCaa.acca
Loader icon
RegPredict
276 2.80e+03 AatccGgATaCCCaCACCa
Loader icon
RegPredict
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for DVU2075

DVU2075 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
ATPases involved in chromosome partitioning cog/ cog
cobalamin biosynthetic process go/ biological_process
cobyrinic acid a,c-diamide synthase activity go/ molecular_function
Module neighborhood information for DVU2075

DVU2075 has total of 50 gene neighbors in modules 77, 144
Gene neighbors (50)
Gene Common Name Description Module membership
DVU0018 methyl-accepting chemotaxis protein 77, 208
DVU0134 glycosyl transferase group 2 family protein 144, 185
DVU0330 response regulator 77, 321
DVU0331 sensory box histidine kinase 77, 321
DVU0427 hypothetical protein DVU0427 144, 313
DVU0591 methyl-accepting chemotaxis protein 77, 321
DVU0592 cheW-1 chemotaxis protein CheW 77, 321
DVU0700 methyl-accepting chemotaxis protein 77, 321
DVU0747 ABC transporter ATP-binding protein 106, 144
DVU0861 glycosyl transferase group 1 family protein 144, 208
DVU0962 hypothetical protein DVU0962 144, 225
DVU1157 sensory box histidine kinase 144, 305
DVU1158 hypothetical protein DVU1158 144, 305
DVU1163 major facilitator superfamily protein 15, 144
DVU1552 hypothetical protein DVU1552 77, 242
DVU1559 mop aldehyde oxidoreductase 77, 242
DVU1570 porB pyruvate ferredoxin oxidoreductase subunit beta 77, 153
DVU1697 hypothetical protein DVU1697 144, 265
DVU1727 hypothetical protein DVU1727 144, 265
DVU1856 hypothetical protein DVU1856 144, 261
DVU1959 EAL/GGDEF domain-containing protein 144, 313
DVU2020 hypothetical protein DVU2020 77, 175
DVU2071 hypothetical protein DVU2071 144, 265
DVU2075 ParA family protein 77, 144
DVU2077 hypothetical protein DVU2077 77, 102
DVU2099 carbon monoxide dehydrogenase accessory protein CooC 68, 144
DVU2118 hypothetical protein DVU2118 77, 321
DVU2119 type II/III secretion system protein 77, 321
DVU2121 response regulator 77, 321
DVU2126 hypothetical protein DVU2126 77, 321
DVU2273 hypothetical protein DVU2273 144, 265
DVU2281 sensor histidine kinase/response regulator 77, 321
DVU2393 None 144, 260
DVU2481 formate dehydrogenase subunit beta 77, 348
DVU2483 cytochrome c family protein 77, 348
DVU2524 cytochrome c3 77, 321
DVU2525 hynB-2 periplasmic 77, 291
DVU2526 hynA-2 periplasmic 77, 321
DVU2626 hypothetical protein DVU2626 77, 321
DVU2737 RNA methyltransferase 144, 265
DVU2809 cytochrome c3 144, 305
DVU2811 formate dehydrogenase subunit beta 144, 305
DVU3133 glycerol uptake facilitator protein 77, 321
DVU3134 glpK glycerol kinase 77, 321
DVU3246 RND efflux system outer membrane lipoprotein 77, 321
DVU3247 RND family efflux transporter MFP subunit 77, 321
DVU3265 tartrate dehydratase subunit beta 77, 205
DVU3322 hypothetical protein DVU3322 144, 222
DVU3323 ABC transporter permease 144, 222
DVU3324 ABC transporter ATP-binding protein 144, 222
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for DVU2075
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend