Organism : Desulfovibrio vulgaris Hildenborough | Module List :
DVU2348 dut

deoxyuridine 5'-triphosphate nucleotidohydrolase

CircVis
Functional Annotations (2)
Function System
Pyrimidine metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for DVU2348
(Mouseover regulator name to see its description)

DVU2348 is regulated by 19 influences and regulates 0 modules.
Regulators for DVU2348 dut (19)
Regulator Module Operator
DVU0277
DVU2547
153 combiner
DVU0309
DVU1788
153 combiner
DVU0629 153 tf
DVU2547
DVU2114
153 combiner
DVU2557
DVU2547
153 combiner
DVU2557
DVU2675
153 combiner
DVU2909
DVU1949
153 combiner
DVUA0151
DVU1788
153 combiner
DVU0277
DVU1690
262 combiner
DVU0277
DVU1745
262 combiner
DVU0525 262 tf
DVU0606
DVU2251
262 combiner
DVU0679
DVU2251
262 combiner
DVU2319
DVU2690
262 combiner
DVU2557
DVU0653
262 combiner
DVU2557
DVU0936
262 combiner
DVU3167
DVU2251
262 combiner
DVU3313 262 tf
DVU3313
DVU0230
262 combiner

Warning: DVU2348 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.
Click on the RegPredict links to explore the motif in RegPredict.

Motif Table (4)
Motif Id e-value Consensus Motif Logo RegPredict
291 2.30e-03 cAGCAaGGAG
Loader icon
RegPredict
292 4.70e+00 GGCA.GAtGCc
Loader icon
RegPredict
499 1.00e+02 TtGtgAAA
Loader icon
RegPredict
500 9.80e+03 Aaa.tgtGCttTccCgcTcCaTt
Loader icon
RegPredict
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for DVU2348

DVU2348 is enriched for 2 functions in 4 categories.
Enrichment Table (2)
Function System
Pyrimidine metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Module neighborhood information for DVU2348

DVU2348 has total of 48 gene neighbors in modules 153, 262
Gene neighbors (48)
Gene Common Name Description Module membership
DVU0068 hypothetical protein DVU0068 107, 153
DVU0095 polyamine ABC transporter periplasmic polyamine-binding protein 139, 262
DVU0096 potC spermidine/putrescine ABC transporter membrane protein 139, 262
DVU0239 hypothetical protein DVU0239 153, 274
DVU0253 oxidoreductase 148, 153
DVU0386 amino acid ABC transporter periplasmic amino acid-binding protein 262, 288
DVU0411 heptosyltransferase family protein 153, 342
DVU0456 DHH family protein 153, 192
DVU0477 icd isocitrate dehydrogenase, NADP-dependent 230, 262
DVU0624 NapC/NirT cytochrome c family protein 153, 255
DVU0625 cytochrome c nitrite reductase, catalytic subunit NfrA 153, 255
DVU0676 His/Glu/Gln/Arg/opine ABC transporter permease 153, 198
DVU0712 amino acid ABC transporter periplasmic-binding protein 262, 331
DVU0819 FMN reductase, NADPH-dependent 153, 274
DVU0937 hypothetical protein DVU0937 11, 262
DVU0995 ThiJ/PfpI family protein 60, 153
DVU1095 argG argininosuccinate synthase 220, 262
DVU1569 porA pyruvate ferredoxin oxidoreductase subunit alpha 148, 153
DVU1570 porB pyruvate ferredoxin oxidoreductase subunit beta 77, 153
DVU1777 cynT carbonic anhydrase 179, 262
DVU1816 hypothetical protein DVU1816 148, 153
DVU1912 hypothetical protein DVU1912 81, 262
DVU1934 phosphonate ABC transporter permease 33, 262
DVU1937 phosphonate ABC transporter periplasmic phosphonate-binding protein 145, 262
DVU2098 cooS carbon monoxide dehydrogenase 179, 262
DVU2205 tryptophan-specific transport protein 255, 262
DVU2342 amino acid ABC transporter periplasmic amino acid-binding protein 178, 262
DVU2347 argD acetylornithine aminotransferase 139, 262
DVU2348 dut deoxyuridine 5'-triphosphate nucleotidohydrolase 153, 262
DVU2364 class I/II aminotransferase 146, 262
DVU2529 pgk phosphoglycerate kinase 262, 296
DVU2543 hydroxylamine reductase 153, 304
DVU2544 iron-sulfur cluster-binding protein 153, 161
DVU2589 hypothetical protein DVU2589 37, 153
DVU2590 sensory box protein 37, 153
DVU2792 electron transport complex protein RnfC 139, 262
DVU2793 electron transport complex protein RnfD 139, 262
DVU2794 electron transport complex protein RnfG 139, 262
DVU2795 electron transport complex RsxE subunit 139, 262
DVU2796 electron transport complex protein RnfA 139, 262
DVU2798 ApbE family protein 139, 262
DVU2931 sensory box histidine kinase 75, 262
DVU3171 cytochrome c3 146, 262
DVU3259 xth exodeoxyribonuclease III 153, 296
DVU3262 fdrA fumarate reductase flavoprotein subunit 153, 348
DVU3294 aldehyde dehydrogenase family protein 153, 348
DVU3319 putA proline dehydrogenase/delta-1-pyrroline-5-carboxylate dehydrogenase 153, 348
DVUA0095 hypothetical protein DVUA0095 153, 315
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for DVU2348
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend