Organism : Geobacter sulfurreducens | Module List :
GSU0638

conserved hypothetical protein (VIMSS)

CircVis
Functional Annotations (1)
Function System
Uncharacterized protein conserved in bacteria cog/ cog
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU0638
(Mouseover regulator name to see its description)

GSU0638 is regulated by 15 influences and regulates 0 modules.
Regulators for GSU0638 (15)
Regulator Module Operator
GSU0776 158 tf
GSU1495 158 tf
GSU1940 158 tf
GSU2113 158 tf
GSU2506 158 tf
GSU2523 158 tf
GSU2735 158 tf
GSU2868 158 tf
GSU0063 70 tf
GSU0951 70 tf
GSU1495 70 tf
GSU1639 70 tf
GSU1653 70 tf
GSU3363 70 tf
GSU3370 70 tf

Warning: GSU0638 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2300 2.50e-02 TattgAAaTgcaaGccGttttTCa
Loader icon
2301 1.80e+00 Cggc.GGAAAaCcGA
Loader icon
2476 1.50e+03 TctTTcggCATAGtATGGA
Loader icon
2477 5.80e-01 AaagTTC.ctggccAaTtGaCAAA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU0638

GSU0638 is enriched for 1 functions in 3 categories.
Enrichment Table (1)
Function System
Uncharacterized protein conserved in bacteria cog/ cog
Module neighborhood information for GSU0638

GSU0638 has total of 48 gene neighbors in modules 70, 158
Gene neighbors (48)
Gene Common Name Description Module membership
GSU0072 GSU0072 hypothetical protein (VIMSS) 70, 281
GSU0307 hypC hydrogenase assembly chaperone hypC/hupF (NCBI) 42, 158
GSU0570 GSU0570 conserved hypothetical protein (VIMSS) 47, 70
GSU0638 GSU0638 conserved hypothetical protein (VIMSS) 70, 158
GSU0639 GSU0639 hypothetical protein (NCBI) 70, 158
GSU0640 GSU0640 conserved hypothetical protein (VIMSS) 95, 158
GSU0743 GSU0743 NAD-dependent dehydrogenase subunit (VIMSS) 158, 265
GSU0816 GSU0816 ABC transporter, ATP-binding protein (VIMSS) 88, 158
GSU1030 GSU1030 methyl-accepting chemotaxis protein (VIMSS) 70, 269
GSU1182 malQ 4-alpha-glucanotransferase (NCBI) 70, 269
GSU1186 GSU1186 hypothetical protein (VIMSS) 70, 269
GSU1192 GSU1192 conserved hypothetical protein (VIMSS) 98, 158
GSU1231 GSU1231 response regulator (VIMSS) 87, 158
GSU1291 GSU1291 response regulator (VIMSS) 147, 158
GSU1405 GSU1405 hypothetical protein (VIMSS) 70, 281
GSU1507 GSU1507 heptosyltransferase family protein, putative (VIMSS) 105, 158
GSU1523 surE stationary-phase survival protein SurE (NCBI) 47, 70
GSU1574 GSU1574 hypothetical protein (VIMSS) 70, 281
GSU1595 dut deoxyuridine 5'-triphosphate nucleotidohydrolase (NCBI) 124, 158
GSU1655 GSU1655 sensory box histidine kinase/response regulator (VIMSS) 17, 158
GSU1658 GSU1658 response regulator/GGDEF domain protein (NCBI) 158, 218
GSU1713 GSU1713 conserved hyothetical protein, truncation (VIMSS) 70, 304
GSU1748 GSU1748 RNA methyltransferase, TrmA family (VIMSS) 70, 226
GSU1749 GSU1749 hypothetical protein (VIMSS) 11, 70
GSU1750 infA translation initiation factor IF-1 (NCBI) 70, 314
GSU1783 GSU1783 type IV pilus biogenesis protein PilB, putative (VIMSS) 17, 158
GSU1785 GSU1785 cytochrome c family protein, putative (NCBI) 158, 179
GSU1794 GSU1794 HAM1 protein (NCBI) 158, 248
GSU1795 rph ribonuclease PH (NCBI) 35, 158
GSU1940 GSU1940 sigma-54 dependent DNA-binding response regulator (VIMSS) 158, 335
GSU1953 asnB asparagine synthase, glutamine-hydrolyzing (NCBI) 158, 333
GSU2119 GSU2119 integrative genetic element Gsu56, integrase (VIMSS) 70, 274
GSU2120 ihfA-2 integration host factor, alpha subunit (NCBI) 70, 274
GSU2151 ssb-1 single-strand binding protein (NCBI) 6, 70
GSU2153 GSU2153 hypothetical protein (VIMSS) 70, 337
GSU2155 GSU2155 hypothetical protein (VIMSS) 70, 135
GSU2156 GSU2156 hypothetical protein (VIMSS) 1, 70
GSU2157 nrd conserved domain protein (NCBI) 70, 153
GSU2313 GSU2313 response regulator (VIMSS) 70, 140
GSU2353 GSU2353 conserved hypothetical protein (VIMSS) 32, 70
GSU2377 GSU2377 hypothetical protein (VIMSS) 51, 158
GSU2611 GSU2611 hypothetical protein (VIMSS) 158, 191
GSU2620 queA S-adenosylmethionine:tRNA ribosyltransferase-isomerase (NCBI) 76, 158
GSU2929 GSU2929 conserved hypothetical protein (NCBI) 47, 70
GSU2931 GSU2931 hypothetical protein (VIMSS) 70, 79
GSU3167 GSU3167 hypothetical protein (VIMSS) 70, 130
GSU3169 GSU3169 conserved domain protein (NCBI) 70, 269
GSU4009 GSU4009 None 70, 122
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU0638
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend