Organism : Geobacter sulfurreducens | Module List :
GSU2973

lipoprotein, putative (VIMSS)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU2973
(Mouseover regulator name to see its description)

GSU2973 is regulated by 16 influences and regulates 0 modules.
Regulators for GSU2973 (16)
Regulator Module Operator
GSU1320 296 tf
GSU1639 296 tf
GSU2787 296 tf
GSU2809 296 tf
GSU2915 296 tf
GSU3053 296 tf
GSU0018 59 tf
GSU0164 59 tf
GSU0300 59 tf
GSU1115 59 tf
GSU1250 59 tf
GSU1569 59 tf
GSU2041 59 tf
GSU2185 59 tf
GSU3108 59 tf
GSU3370 59 tf

Warning: GSU2973 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2278 5.90e-02 aaaACAaAActTtATTTtAT
Loader icon
2279 1.80e+01 tccgGCtgtttcTttcc.aa
Loader icon
2750 3.10e+00 TAaaATCcTTaAcAAaC
Loader icon
2751 9.60e-01 GgCaTCCcttcTgCGgcGgaC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU2973

Warning: No Functional annotations were found!

Module neighborhood information for GSU2973

GSU2973 has total of 59 gene neighbors in modules 59, 296
Gene neighbors (59)
Gene Common Name Description Module membership
GSU0124 GSU0124 competence protein F, putative (VIMSS) 59, 261
GSU0134 GSU0134 metallo-beta-lactamase family protein (NCBI) 38, 59
GSU0235 GSU0235 S1 RNA binding domain protein (VIMSS) 59, 298
GSU0258 GSU0258 hypothetical protein (VIMSS) 59, 222
GSU0269 GSU0269 conserved hypothetical protein (VIMSS) 59, 137
GSU0291 cheR CheR methyltransferase, SAM binding domain protein, putative (NCBI) 36, 296
GSU0375 gcvT glycine cleavage system T protein (NCBI) 296, 304
GSU0376 gcvH-1 glycine cleavage system H protein (NCBI) 153, 296
GSU0377 GSU0377 glycine cleavage system P protein, subunit 1 (VIMSS) 153, 296
GSU0378 GSU0378 glycine cleavage system P protein, subunit 2 (VIMSS) 153, 296
GSU0379 GSU0379 biotin/lipoate A/B protein ligase family protein (NCBI) 153, 296
GSU0380 lipA lipoic acid synthetase (NCBI) 153, 296
GSU0381 GSU0381 lipoprotein, putative (VIMSS) 274, 296
GSU0382 GSU0382 conserved hypothetical protein (VIMSS) 153, 296
GSU0597 GSU0597 hypothetical protein (VIMSS) 45, 59
GSU0698 GSU0698 PBS lyase HEAT-like repeat protein (NCBI) 296, 304
GSU0855 GSU0855 membrane protein, TerC family (NCBI) 59, 71
GSU0920 GSU0920 hypothetical protein (NCBI) 82, 296
GSU0951 GSU0951 transcriptional regulator, TetR family (VIMSS) 82, 296
GSU1025 GSU1025 conserved domain protein (NCBI) 59, 160
GSU1299 cheW purine-binding chemotaxis protein CheW (NCBI) 59, 157
GSU1315 merA-1 mercuric reductase (NCBI) 296, 304
GSU1326 recG ATP-dependent DNA helicase RecG (NCBI) 296, 298
GSU1372 GSU1372 3-hydroxyisobutyrate dehydrogenase family protein (VIMSS) 59, 304
GSU1373 GSU1373 hypothetical protein (VIMSS) 59, 321
GSU1618 GSU1618 hypothetical protein (VIMSS) 59, 272
GSU1619 cheY-4 chemotaxis protein CheY (NCBI) 59, 304
GSU1620 GSU1620 iron-sulfur cluster binding protein, putative (VIMSS) 59, 272
GSU1621 GSU1621 conserved domain protein (VIMSS) 59, 272
GSU1622 GSU1622 L-lactate permease (VIMSS) 59, 272
GSU1623 GSU1623 glycolate oxidase subunit GlcD, putative (VIMSS) 59, 272
GSU1624 GSU1624 glycolate oxidase iron-sulfur subunit, putative (NCBI) 59, 272
GSU1671 GSU1671 response regulator/GGDEF domain protein (NCBI) 59, 224
GSU1680 GSU1680 conserved hypothetical protein (VIMSS) 59, 300
GSU1751 GSU1751 hypothetical protein (VIMSS) 59, 141
GSU2077 GSU2077 hypothetical protein (VIMSS) 59, 194
GSU2125 GSU2125 conserved domain protein (VIMSS) 59, 222
GSU2135 GSU2135 heavy metal efflux pump, CzcA family (VIMSS) 59, 113
GSU2218 cheW-6 chemotaxis protein CheW (NCBI) 59, 321
GSU2334 GSU2334 hypothetical protein (VIMSS) 59, 147
GSU2336 otsB trehalose-phosphatase (NCBI) 296, 300
GSU2369 GSU2369 hypothetical protein (VIMSS) 59, 79
GSU2416 cheW-8 chemotaxis protein CheW (NCBI) 59, 79
GSU2450 GSU2450 conserved hypothetical protein (VIMSS) 51, 59
GSU2452 GSU2452 copper-translocating P-type ATPase (VIMSS) 40, 59
GSU2454 GSU2454 membrane protein, putative (VIMSS) 59, 144
GSU2466 GSU2466 hypothetical protein (VIMSS) 39, 296
GSU2477 GSU2477 TPR domain/radical SAM/B12 binding domain protein (NCBI) 59, 198
GSU2573 GSU2573 hypothetical protein (VIMSS) 104, 296
GSU2577 GSU2577 hypothetical protein (VIMSS) 296, 304
GSU2673 GSU2673 hypothetical protein (VIMSS) 144, 296
GSU2676 GSU2676 membrane protein, putative (VIMSS) 152, 296
GSU2780 GSU2780 hypothetical protein (VIMSS) 165, 296
GSU2781 GSU2781 efflux transporter, RND family, MFP subunit (NCBI) 130, 296
GSU2782 GSU2782 AcrB/AcrD/AcrF family protein (VIMSS) 278, 296
GSU2783 GSU2783 HDIG domain protein (VIMSS) 147, 296
GSU2973 GSU2973 lipoprotein, putative (VIMSS) 59, 296
GSU3053 fliA RNA polymerase sigma factor for flagellar operon (NCBI) 296, 312
GSU3417 GSU3417 dioxygenase, putative (VIMSS) 21, 59
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU2973
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend