Organism : Halobacterium salinarum NRC-1 | Module List:
Module 7 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 7

There are 5 regulatory influences for Module 7

Regulator Table (5)
Regulator Name Type
VNG1836G
VNG1899G
combiner
VNG0254G tf
VNG0536G
VNG0258H
combiner
VNG5028G
VNG0258H
combiner
VNG1899G
VNG0258H
combiner

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
993 1.30e+01 ttggtGataaTcgat
Loader icon
994 7.70e+02 GAtAat..tCaactGTt.gtaA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 7 is enriched for following functions.

KEGG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini Hochberg pvalue Genes with function Method
Microbial metabolism in diverse environments kegg pathway 2.39e-02 3.65e-02 3/29
Energy Metabolism kegg subcategory 1.26e-02 3.53e-02 4/29
Amino Acid Metabolism kegg subcategory 3.53e-03 1.37e-02 6/29
Metabolism kegg category 1.46e-03 7.12e-03 16/29
Energy Metabolism kegg subcategory 5.26e-03 1.53e-02 4/29
Microbial metabolism in diverse environments kegg pathway 2.39e-02 4.69e-02 3/29

GO Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
cellular component movement biological_process 1.00e-06 9.00e-06 3/29
structural molecule activity molecular_function 1.30e-05 5.10e-05 3/29

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Archaeal flagellins cog 1.00e-06 1.00e-06 3/29
Cell cycle control, cell division, chromosome partitioning cog subcategory 8.60e-05 2.07e-03 3/29
Cell motility cog subcategory 0.00e+00 0.00e+00 7/29
Posttranslational modification, protein turnover, chaperones cog subcategory 2.30e-04 4.40e-03 5/29
Cellular processes and signaling cog category 0.00e+00 0.00e+00 18/29
Cellular processes and signaling cog category 0.00e+00 0.00e+00 16/29
Cell cycle control, cell division, chromosome partitioning cog subcategory 8.60e-05 2.12e-04 3/29
Cell motility cog subcategory 0.00e+00 0.00e+00 7/29
Posttranslational modification, protein turnover, chaperones cog subcategory 2.30e-04 4.94e-04 5/29
Energy production and conversion cog subcategory 1.49e-02 2.36e-02 4/29
Archaeal flagellins cog 1.00e-06 2.00e-06 3/29
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 7

There are 29 genes in Module 7

Gene Member Table (29)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
VNG0192G ftsZ2 CDS 1447112 chromosome 165152 166279 - cell division protein FtsZ False
VNG0194H CDS 1447113 chromosome 166336 166503 - hypothetical protein VNG0194H True
VNG0207H CDS 1447124 chromosome 175115 175471 + hypothetical protein VNG0207H False
VNG0208H CDS 1447125 chromosome 175471 175920 + hypothetical protein VNG0208H False
VNG0209H CDS 1447126 chromosome 175913 176947 + hypothetical protein VNG0209H False
VNG0259G ipp CDS 1447163 chromosome 211101 211634 + inorganic pyrophosphatase False
VNG0261H CDS 1447164 chromosome 211694 211852 + hypothetical protein VNG0261H False
VNG0321G ids CDS 1447206 chromosome 251940 253118 - Ids False
VNG0524G yurY CDS 1447354 chromosome 404888 405814 + ABC transporter ATP-binding protein False
VNG0525C CDS 1447355 chromosome 405851 407275 + hypothetical protein VNG0525C False
VNG0527C CDS 1447356 chromosome 407277 408491 + hypothetical protein VNG0527C False
VNG0796G cgs CDS 1447566 chromosome 598879 600096 + cystathionine gamma synthase/lyase False
VNG0940Gm ACS3 CDS 1449030 chromosome 716669 718771 + Acetyl-CoA synthetase False
VNG0946G minD1 CDS 1447677 chromosome 721030 722001 - cell division inhibitor False
VNG0949G gspE3 CDS 1447679 chromosome 723798 725687 - type II secretion system protein False
VNG0954C CDS 1447681 chromosome 727343 728857 - hypothetical protein VNG0954C False
VNG0955G fapE CDS 1447682 chromosome 728962 729432 - flagella-like protein E False
VNG0960G flaB1 CDS 1447685 chromosome 731799 732380 + flagellin B1 False
VNG0961G flaB2 CDS 1447686 chromosome 732464 732982 + flagellin B2 False
VNG0962G flaB3 CDS 1447687 chromosome 733066 733575 + flagellin B3 False
VNG0974G cheY CDS 1447696 chromosome 742886 743248 - hypothetical protein VNG0974G False
VNG0976G cheW1 CDS 1447697 chromosome 743295 743831 - chemotaxis protein False
VNG1125G korB CDS 1447814 chromosome 855719 856657 - KorB False
VNG1128G korA CDS 1447815 chromosome 856660 858582 - KorA False
VNG1933G ftsZ3 CDS 1448420 chromosome 1424535 1425587 + cell division protein False
VNG2122G ilvE2 CDS 1448567 chromosome 1559008 1559934 - branched-chain amino acid aminotransferase False
VNG2226G cctA CDS 1448653 chromosome 1656061 1657806 - thermosome subunit alpha False
VNG2499G gcdH CDS 1448863 chromosome 1866390 1867403 - glutaryl-CoA dehydrogenase False
VNG2539H CDS 1448902 chromosome 1903499 1905028 + hypothetical protein VNG2539H False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.