Organism : Methanococcus maripaludis S2 | Module List :
MMP1062

hypothetical protein MMP1062

CircVis
Functional Annotations (4)
Function System
Archaeal serine proteases cog/ cog
ATP-dependent peptidase activity go/ molecular_function
serine-type endopeptidase activity go/ molecular_function
proteolysis go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for MMP1062
(Mouseover regulator name to see its description)

Warning: No Regulators were found for MMP1062!

Warning: MMP1062 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
935 9.60e+02 cCgCcgtgAaC
Loader icon
936 7.30e+03 CcAccaTTGtaaGc
Loader icon
939 6.30e+00 acCGGAaT
Loader icon
940 1.90e+03 cAGGTccGATGTAAGcCTaC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for MMP1062

MMP1062 is enriched for 4 functions in 3 categories.
Enrichment Table (4)
Function System
Archaeal serine proteases cog/ cog
ATP-dependent peptidase activity go/ molecular_function
serine-type endopeptidase activity go/ molecular_function
proteolysis go/ biological_process
Module neighborhood information for MMP1062

MMP1062 has total of 42 gene neighbors in modules 142, 144
Gene neighbors (42)
Gene Common Name Description Module membership
MMP0001 hypothetical protein MMP0001 46, 106, 121, 144
MMP0008 DP1 DNA polymerase II small subunit 22, 75, 142
MMP0017 hypothetical protein MMP0017 67, 142
MMP0019 hypothetical protein MMP0019 14, 104, 142
MMP0021 hypothetical protein MMP0021 14, 142
MMP0113 hypothetical protein MMP0113 23, 75, 142
MMP0119 birA biotin--acetyl-CoA-carboxylase ligase 1, 75, 142
MMP0120 hypothetical protein MMP0120 55, 142
MMP0193 hypothetical protein MMP0193 144, 153
MMP0206 modB molybdenum ABC transporter permease 71, 144
MMP0225 gldA glycerol dehydrogenase 117, 142
MMP0324 hypothetical protein MMP0324 62, 142
MMP0499 hypothetical protein MMP0499 22, 28, 144, 146, 153
MMP0504 modC molybdenum ABC transporter ATP-binding protein 71, 144
MMP0505 hypothetical protein MMP0505 71, 144
MMP0506 modB NifC-like ABC-type transporter 71, 144
MMP0507 modA molybdenum ABC transporter periplasmic molybdate-binding protein 71, 144
MMP0544 MoaA/nifB/pqqE family protein 55, 142
MMP0545 putative molybdopterin biosynthesis protein MoeA/LysR substrate binding-domain-containing protein 55, 142
MMP0631 putative iron dependent repressor 28, 121, 144
MMP0674 helix-turn-helix DNA binding protein 5, 144
MMP0675 hypothetical protein MMP0675 5, 144
MMP0685 N-6 adenine-specific DNA methylase 1, 144
MMP0717 hypothetical protein MMP0717 22, 144
MMP0727 uvrB excinuclease ABC subunit B 49, 142
MMP0728 uvrC excinuclease ABC subunit C 90, 142
MMP0986 thyA thymidylate synthase 104, 142
MMP0993 XRE family transcriptional regulator 67, 144
MMP0994 hypothetical protein MMP0994 67, 144, 153
MMP0995 hypothetical protein MMP0995 76, 144
MMP1009 pyrC dihydroorotase 22, 142
MMP1062 hypothetical protein MMP1062 142, 144
MMP1080 group 1 glycosyl transferase 14, 142
MMP1141 ATP-dependent helicase 75, 142
MMP1228 hypothetical protein MMP1228 4, 22, 142
MMP1236 hypothetical protein MMP1236 22, 55, 117, 142, 152
MMP1264 hypothetical protein MMP1264 104, 142, 157
MMP1346 basic helix-loop-helix dimerization domain-containing protein 49, 67, 142
MMP1398 dapE diaminopimelate aminotransferase 22, 142
MMP1485 moaB molybdenum cofactor biosynthesis protein 104, 142
MMP1578 nicotinamide-nucleotide adenylyltransferase 144, 153
MMP1597 phosphatidylglycerophosphatase A 22, 142, 144
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for MMP1062
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend