Organism : Pseudomonas aeruginosa | Module List :
PA1110

hypothetical protein (NCBI)

CircVis
Functional Annotations (3)
Function System
16S rRNA uridine-516 pseudouridylate synthase and related pseudouridylate synthases cog/ cog
RNA binding go/ molecular_function
pseudouridine synthase activity go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA1110
(Mouseover regulator name to see its description)

PA1110 is regulated by 29 influences and regulates 0 modules.
Regulators for PA1110 (29)
Regulator Module Operator
PA0037 375 tf
PA0294 375 tf
PA0306 375 tf
PA0455 375 tf
PA1884 375 tf
PA1998 375 tf
PA2115 375 tf
PA2121 375 tf
PA2547 375 tf
PA3477 375 tf
PA3778 375 tf
PA3898 375 tf
PA5253 375 tf
PA0708 101 tf
PA1359 101 tf
PA1399 101 tf
PA1544 101 tf
PA1570 101 tf
PA1713 101 tf
PA2622 101 tf
PA2692 101 tf
PA2737 101 tf
PA2848 101 tf
PA2899 101 tf
PA3133 101 tf
PA3714 101 tf
PA3845 101 tf
PA4508 101 tf
PA5116 101 tf

Warning: PA1110 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3034 5.70e-05 AtagAtaagtTttaattatTt
Loader icon
3035 5.60e-01 AAtCGaTTTcTaAaA
Loader icon
3574 3.10e-02 CatGAAGTcaatGGaCAATcaaGA
Loader icon
3575 6.60e-02 tc.TttctGTgCgGagaAacctgc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA1110

PA1110 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
16S rRNA uridine-516 pseudouridylate synthase and related pseudouridylate synthases cog/ cog
RNA binding go/ molecular_function
pseudouridine synthase activity go/ molecular_function
Module neighborhood information for PA1110

PA1110 has total of 55 gene neighbors in modules 101, 375
Gene neighbors (55)
Gene Common Name Description Module membership
PA0010 tag DNA-3-methyladenine glycosidase I (NCBI) 65, 375
PA0013 PA0013 hypothetical protein (NCBI) 335, 375
PA0037 trpI transcriptional regulator TrpI (NCBI) 375, 377
PA0294 aguR transcriptional regulator AguR (NCBI) 20, 375
PA0305 PA0305 hypothetical protein (NCBI) 375, 380
PA0306 PA0306 probable transcriptional regulator (NCBI) 295, 375
PA0383 PA0383 hypothetical protein (NCBI) 375, 377
PA0486 PA0486 hypothetical protein (NCBI) 23, 101
PA0544 PA0544 hypothetical protein (NCBI) 313, 375
PA0545 PA0545 hypothetical protein (NCBI) 162, 375
PA0560 PA0560 hypothetical protein (NCBI) 229, 375
PA0703 PA0703 probable major facilitator superfamily (MFS) transporter (NCBI) 283, 375
PA0708 PA0708 probable transcriptional regulator (NCBI) 101, 138
PA0874 PA0874 hypothetical protein (NCBI) 58, 101
PA0984 PA0984 colicin immunity protein (NCBI) 101, 231
PA1044 PA1044 hypothetical protein (NCBI) 101, 375
PA1046 PA1046 hypothetical protein (NCBI) 241, 375
PA1110 PA1110 hypothetical protein (NCBI) 101, 375
PA1163 PA1163 probable glucosyl transferase (NCBI) 101, 326
PA1227 PA1227 hypothetical protein (NCBI) 101, 438
PA1367 PA1367 hypothetical protein (NCBI) 101, 335
PA1383 PA1383 hypothetical protein (NCBI) 101, 254
PA1488 PA1488 hypothetical protein (NCBI) 295, 375
PA1489 PA1489 hypothetical protein (NCBI) 295, 375
PA1570 PA1570 probable transcriptional regulator (NCBI) 101, 157
PA1690 pscU translocation protein in type III secretion (NCBI) 101, 218
PA1691 pscT translocation protein in type III secretion (NCBI) 101, 218
PA1702 PA1702 conserved hypothetical protein in type III secretion (NCBI) 101, 218
PA1704 pcrR transcriptional regulator protein PcrR (NCBI) 101, 218
PA1831 PA1831 hypothetical protein (NCBI) 283, 375
PA1844 PA1844 hypothetical protein (NCBI) 235, 375
PA1884 PA1884 probable transcriptional regulator (NCBI) 335, 375
PA2628 PA2628 hypothetical protein (NCBI) 20, 375
PA2661 PA2661 hypothetical protein (NCBI) 375, 478
PA2692 PA2692 probable transcriptional regulator (NCBI) 101, 126
PA2852 PA2852 hypothetical protein (NCBI) 101, 335
PA2929 PA2929 hypothetical protein (NCBI) 23, 101
PA3016 PA3016 hypothetical protein (NCBI) 48, 375
PA3403 PA3403 hypothetical protein (NCBI) 372, 375
PA3532 PA3532 hypothetical protein (NCBI) 375, 377
PA3715 PA3715 hypothetical protein (NCBI) 101, 443
PA3826 PA3826 hypothetical protein (NCBI) 266, 375
PA3869 PA3869 hypothetical protein (NCBI) 101, 326
PA4355 PA4355 probable major facilitator superfamily (MFS) transporter (NCBI) 101, 108
PA4508 PA4508 probable transcriptional regulator (NCBI) 44, 101
PA4783 PA4783 hypothetical protein (NCBI) 101, 229
PA4830 PA4830 hypothetical protein (NCBI) 28, 101
PA4831 PA4831 probable transcriptional regulator (NCBI) 28, 101
PA4999 waaL O-antigen ligase, WaaL (NCBI) 231, 375
PA5030 PA5030 probable major facilitator superfamily (MFS) transporter (NCBI) 101, 196
PA5121 PA5121 hypothetical protein (NCBI) 40, 375
PA5457 PA5457 hypothetical protein (NCBI) 20, 375
PA5468 PA5468 probable citrate transporter (NCBI) 344, 375
PA5469 PA5469 hypothetical protein (NCBI) 344, 375
PA5518 PA5518 probable potassium efflux transporter (NCBI) 40, 375
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA1110
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend