Organism : Pseudomonas aeruginosa | Module List :
PA1690 pscU

translocation protein in type III secretion (NCBI)

CircVis
Functional Annotations (6)
Function System
Type III secretory pathway, component EscU cog/ cog
transport go/ biological_process
protein secretion go/ biological_process
integral to membrane go/ cellular_component
Bacterial secretion system kegg/ kegg pathway
FlhB_rel_III tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA1690
(Mouseover regulator name to see its description)

PA1690 is regulated by 20 influences and regulates 0 modules.
Regulators for PA1690 pscU (20)
Regulator Module Operator
PA0708 101 tf
PA1359 101 tf
PA1399 101 tf
PA1544 101 tf
PA1570 101 tf
PA1713 101 tf
PA2622 101 tf
PA2692 101 tf
PA2737 101 tf
PA2848 101 tf
PA2899 101 tf
PA3133 101 tf
PA3714 101 tf
PA3845 101 tf
PA4508 101 tf
PA5116 101 tf
PA0763 218 tf
PA1713 218 tf
PA3845 218 tf
PA5403 218 tf

Warning: PA1690 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3034 5.70e-05 AtagAtaagtTttaattatTt
Loader icon
3035 5.60e-01 AAtCGaTTTcTaAaA
Loader icon
3264 5.80e-04 AAaAatTcCCggcctgtccTGAaA
Loader icon
3265 8.90e+00 cgCgcggttttcTtT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA1690

PA1690 is enriched for 6 functions in 3 categories.
Enrichment Table (6)
Function System
Type III secretory pathway, component EscU cog/ cog
transport go/ biological_process
protein secretion go/ biological_process
integral to membrane go/ cellular_component
Bacterial secretion system kegg/ kegg pathway
FlhB_rel_III tigr/ tigrfam
Module neighborhood information for PA1690

PA1690 has total of 45 gene neighbors in modules 101, 218
Gene neighbors (45)
Gene Common Name Description Module membership
PA0252 PA0252 hypothetical protein (NCBI) 218, 247
PA0486 PA0486 hypothetical protein (NCBI) 23, 101
PA0708 PA0708 probable transcriptional regulator (NCBI) 101, 138
PA0874 PA0874 hypothetical protein (NCBI) 58, 101
PA0984 PA0984 colicin immunity protein (NCBI) 101, 231
PA1044 PA1044 hypothetical protein (NCBI) 101, 375
PA1110 PA1110 hypothetical protein (NCBI) 101, 375
PA1163 PA1163 probable glucosyl transferase (NCBI) 101, 326
PA1227 PA1227 hypothetical protein (NCBI) 101, 438
PA1367 PA1367 hypothetical protein (NCBI) 101, 335
PA1383 PA1383 hypothetical protein (NCBI) 101, 254
PA1570 PA1570 probable transcriptional regulator (NCBI) 101, 157
PA1690 pscU translocation protein in type III secretion (NCBI) 101, 218
PA1691 pscT translocation protein in type III secretion (NCBI) 101, 218
PA1693 pscR translocation protein in type III secretion (NCBI) 184, 218
PA1695 pscP translocation protein in type III secretion (NCBI) 184, 218
PA1702 PA1702 conserved hypothetical protein in type III secretion (NCBI) 101, 218
PA1704 pcrR transcriptional regulator protein PcrR (NCBI) 101, 218
PA1710 exsC ExsC, exoenzyme S synthesis protein C precursor. (NCBI) 117, 218
PA1711 exsE ExsE (NCBI) 117, 218
PA1712 exsB exoenzyme S synthesis protein B (NCBI) 218, 518
PA1724 pscK type III export protein PscK (NCBI) 218, 423
PA2191 exoY adenylate cyclase ExoY (NCBI) 184, 218
PA2692 PA2692 probable transcriptional regulator (NCBI) 101, 126
PA2761 PA2761 hypothetical protein (NCBI) 99, 218
PA2852 PA2852 hypothetical protein (NCBI) 101, 335
PA2929 PA2929 hypothetical protein (NCBI) 23, 101
PA3082 gbt glycine betaine transmethylase (NCBI) 218, 234
PA3715 PA3715 hypothetical protein (NCBI) 101, 443
PA3840 PA3840 hypothetical protein (NCBI) 92, 218
PA3841 exoS exoenzyme S (NCBI) 184, 218
PA3843 PA3843 hypothetical protein (NCBI) 184, 218
PA3869 PA3869 hypothetical protein (NCBI) 101, 326
PA3956 PA3956 hypothetical protein (NCBI) 127, 218
PA4355 PA4355 probable major facilitator superfamily (MFS) transporter (NCBI) 101, 108
PA4508 PA4508 probable transcriptional regulator (NCBI) 44, 101
PA4616 PA4616 probable c4-dicarboxylate-binding protein (NCBI) 40, 218
PA4783 PA4783 hypothetical protein (NCBI) 101, 229
PA4830 PA4830 hypothetical protein (NCBI) 28, 101
PA4831 PA4831 probable transcriptional regulator (NCBI) 28, 101
PA4969 PA4969 hypothetical protein (NCBI) 59, 218
PA5030 PA5030 probable major facilitator superfamily (MFS) transporter (NCBI) 101, 196
PA5033 PA5033 hypothetical protein (NCBI) 206, 218
PA5137 PA5137 hypothetical protein (NCBI) 39, 218
PA5138 PA5138 hypothetical protein (NCBI) 114, 218
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA1690
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend